Radius of a Circle Inscribed in a Triangle

Mike Wilkes
IRSC/ASC Chastain 4/4/2014

We have a circle of radius r inscribed in an arbitrary triangle with sides of lengths a, b, and c, as shown in the following Figure:

Figure 1: Circle of radius r inscribed in a triangle with sides a, b, and c.

The dotted lines from the center of the circle to each vertex of the triangle create three triangles, namely, $\triangle A B O, \triangle B C O$, and $\triangle C A O$, each of which has altitude r, the radius of the circle. The total area $A_{a b c}$ of $\triangle A B C$ is the sum of the areas of the three triangles $\triangle A B O, \triangle B C O$, and $\triangle C A O$:

$$
A_{a b c}=\frac{1}{2} a r+\frac{1}{2} b r+\frac{1}{2} c r=\frac{1}{2} r(a+b+c), \text { after factoring the common factor of } r .
$$

In this equation, the expression $\frac{1}{2}(a+b+c)$, that is, half the perimeter $(a+b+c)$ of $\triangle A B C$, is called the semi-perimeter of $\triangle A B C$, usually denoted by s. Replacing $\frac{1}{2}(a+b+c)$ in the area formula by s, we have simply

$$
A_{a b c}=r s
$$

From this expression we obtain a simple formula for the radius r of the inscribed circle in terms of the area of $\triangle A B C$:

$$
\begin{equation*}
r=\frac{A_{a b c}}{s} \tag{1}
\end{equation*}
$$

We will show later that the area of the triangle is given in terms of its semi-perimeter s, and sides a, b, and c, by Heron's formula:

$$
A_{a b c}=\sqrt{s(s-a)(s-b)(s-c)} .
$$

Using this formula in place of $A_{a b c}$ in equation (1) yields the desired expression of the radius of the inscribed circle in terms of s and the three sides of the triangle in which the circle is inscribed:

$$
\begin{equation*}
r=\frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}} . \tag{2}
\end{equation*}
$$

A Derivation of Heron's Formula for the Area of a Triangle

The most difficult part of a complete demonstration of equation (2) is that of deriving Heron's formula. We base our derivation on the following Figure:

Figure 2: Triangle of sides a, b, and c, and altitude h.

The area of $\triangle A B C$ is just

$$
A_{a b c}=\frac{1}{2} b h
$$

and from the right triangle with hypotenuse c and side h we have

$$
\sin A=\frac{h}{c}
$$

from which $h=c \sin A$. Substituting this expression for h in the area formula gives us

$$
A_{a b c}=\frac{1}{2} b c \sin A
$$

The square of this area is then

$$
\begin{equation*}
A_{a b c}^{2}=\frac{1}{4} b^{2} c^{2} \sin ^{2} A \tag{3}
\end{equation*}
$$

Applying the law of cosines to the included angle A of $\triangle A B C$, we find

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

from which

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

hence

$$
\sin ^{2} A=1-\cos ^{2} A=1-\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)^{2}=\frac{4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}}{4 b^{2} c^{2}}
$$

and this gives us

$$
b^{2} c^{2} \sin ^{2} A=\frac{1}{4}\left[4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}\right]
$$

Substituting this expression for $b^{2} c^{2} \sin ^{2} A$ in equation (3) yields for the square of the area:

$$
\begin{equation*}
A_{a b c}^{2}=\frac{1}{16}\left[4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

Since the difference of two squares factors as $x^{2}-y^{2}=(x+y)(x-y)$, the right-hand side of equation (4) can be factored and rewritten as

$$
\begin{aligned}
A_{a b c}^{2} & =\frac{1}{16}\left[2 b c+\left(b^{2}+c^{2}-a^{2}\right)\right] \cdot\left[2 b c-\left(b^{2}+c^{2}-a^{2}\right)\right] \\
& =\frac{1}{16}\left[\left(b^{2}+2 b c+c^{2}\right)-a^{2}\right] \cdot\left[a^{2}-\left(b^{2}-2 b c+c^{2}\right)\right], \text { after regrouping, } \\
& \left.=\frac{1}{16}\left[(b+c)^{2}-a^{2}\right] \cdot\left[a^{2}-(b-c)^{2}\right)\right]
\end{aligned}
$$

after factoring the perfect square trinomials in parentheses. Again, factoring the differences of squares in each bracketed product yields

$$
\begin{equation*}
A_{a b c}^{2}=\frac{1}{16}(b+c+a)(b+c-a)(a+b-c)(a+c-b) \tag{5}
\end{equation*}
$$

Recalling that the semi-perimeter $s=\frac{1}{2}(a+b+c)$, from which

$$
2 s=a+b+c
$$

we obtain expressions for the sums of any two sides of the triangle:

$$
a+b=2 s-c, \quad b+c=2 s-a, \quad \text { and } \quad a+c=2 s-b
$$

These can be used to replace the same sums, occurring in equation (5), in terms of s. By doing so, we obtain the following formula for the area:

$$
A_{a b c}^{2}=\frac{1}{16}(2 s)(2 s-2 a)(2 s-2 c)(2 s-2 b)
$$

Factoring the common factors of 2 and re-ordering the products, this simplifies to

$$
A_{a b c}^{2}=\frac{1}{16}[16 s(s-a)(s-b)(s-c)]=s(s-a)(s-b)(s-c)
$$

and taking the square root of both sides yields, finally, Heron's formula:

$$
\begin{equation*}
A_{a b c}=\sqrt{s(s-a)(s-b)(s-c)} . \tag{6}
\end{equation*}
$$

