Number Systems

- Natural (or Counting) Numbers $N = \{1, 2, 3, ...\}$.
- Whole Numbers $W = \{0, 1, 2, 3, ...\}$; they contain the natural numbers and more (namely, 0).
- Integers $Z = \{ \dots -3, -2, -1, 0, 1, 2, 3, \dots \}$; they contain the natural numbers, the whole numbers and more (namely, the negative natural numbers).
- Rational Numbers Q = numbers that can always be written as fractions, that is, as ratios of two integers, or equivalently, as either terminating or repeating decimals. Examples: ¹/₂ = .5, -5 = ⁻⁵/₁, .25 = ²⁵/₁₀₀, ⁴/₉ = .44444... = .4, ⁵/₁₂ = .41666... = .416 where, in the last two examples of repeating-decimal rational numbers, the "bars" over the 4 and 6 indicate that each repeats without end. They contain the natural numbers, whole numbers, integers, and more (namely, all numbers that can be expressed as fractions).
- Irrational Numbers I = numbers that *cannot* be written as fractions, and whose decimal representations *never repeat a pattern*, and *never terminate*. Examples: The square roots of any numbers that are not perfect squares: $\sqrt{2} = 1.414..., \sqrt{5} = 2.236...$, and special "transcendental" numbers like $\pi = 3.141...$ and e = 2.718... I contains all real numbers that are *not rational*.
- Real Numbers R = any number from any of the sets N, W, Z, Q, or I. The rationals, irrationals, and reals are related by the set operations $Q \cap I = \emptyset$, where \emptyset is the empty set containing no elements, and $R = Q \cup I$.

A Venn diagram illustrating the relations between these sets in given on the next page.

Real Numbers

1