Number Systems

- Natural (or Counting) Numbers $\boldsymbol{N}=\{1,2,3, \ldots\}$.
- Whole Numbers $\boldsymbol{W}=\{0,1,2,3, \ldots\}$; they contain the natural numbers and more (namely, 0).
- Integers $\boldsymbol{Z}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$; they contain the natural numbers, the whole numbers and more (namely, the negative natural numbers).
- Rational Numbers $\boldsymbol{Q}=$ numbers that can always be written as fractions, that is, as ratios of two integers, or equivalently, as either terminating or repeating decimals. Examples: $\frac{1}{2}=.5,-5=\frac{-5}{1}$, $.25=\frac{25}{100}, \frac{4}{9}=.44444 \ldots=. \overline{4}, \frac{5}{12}=.41666 \ldots=.41 \overline{6}$ where, in the last two examples of repeatingdecimal rational numbers, the "bars" over the 4 and 6 indicate that each repeats without end. They contain the natural numbers, whole numbers, integers, and more (namely, all numbers that can be expressed as fractions).
- Irrational Numbers $\boldsymbol{I}=$ numbers that cannot be written as fractions, and whose decimal representations never repeat a pattern, and never terminate. Examples: The square roots of any numbers that are not perfect squares: $\sqrt{2}=1.414 \ldots, \sqrt{5}=2.236 \ldots$, and special "transcendental" numbers like $\pi=3.141 \ldots$ and $e=2.718 \ldots$ I contains all real numbers that are not rational.
- Real Numbers $\boldsymbol{R}=$ any number from any of the sets $\boldsymbol{N}, \boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{Q}$, or \boldsymbol{I}. The rationals, irrationals, and reals are related by the set operations $\boldsymbol{Q} \cap \boldsymbol{I}=\emptyset$, where \emptyset is the empty set containing no elements, and $\boldsymbol{R}=\boldsymbol{Q} \cup \boldsymbol{I}$.

A Venn diagram illustrating the relations between these sets in given on the next page.

Real Numbers

