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1 Euler’s Formula

The general complex exponential function ez, where z is any complex number of the form (a+ ib), has been called
“the most important function in mathematics” by the author of a highly regarded advanced mathematics text
[1, Prologue]. Euler’s formula relates the special complex exponential function eiθ to the familiar trigonometric
functions cos θ and sin θ. It is simple to state, yet profound in its consequences:

eiθ = cos θ + i sin θ. (1)

It can be derived (in a mathematically non-rigorous, that is, formal manner) using ideas from a first course in
calculus. For those readers who have not taken a calculus course, or otherwise have no interest in such a derivation,
please skip ahead to the next Section on applications of the formula.

To derive the relation, consider the complex function

u(θ) = cos θ + i sin θ. (2)

Take the derivative of both sides with respect to θ to obtain

u′(θ) = − sin θ + i cos θ.

Now, notice that i2 = −1, so the right-hand side of this result can be written as

u′(θ) = i2 sin θ + i cos θ,

or, after factoring out the common factor of i and rearranging:

u′(θ) = i (cos θ + i sin θ).

But on the right-hand side, the factor multiplying i is just the original function u(θ), that is,

u′(θ) = i u(θ). (3)

Dividing both sides by u(θ), and recalling that

u′(θ)

u(θ)
=

d

dθ
{ln [u(θ)]} ,

it follows from (3) that

d

dθ
{ln [u(θ)]} = i,

which is easily integrated with respect to θ to get the indefinite integral

ln [u(θ)] = iθ + C0,
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where C0 is an arbitrary constant. Rewriting this in exponential form yields

u(θ) = eiθ+C0 = eiθ eC0 = C eiθ.

where C = eC0 is another arbitrary constant. But from the definition (2), we see that we must have u(0) =
cos 0 + i sin 0 = 1, so from the last equation u(0) = Cei0 = C = 1 since e0 = 1, leaving

u(θ) = eiθ = cos θ + i sin θ, (4)

where the second equality results from definition (2), thus completing a formal derivation of Euler’s formula (1).

2 Elementary Applications

Suppose you want the trigonometric identities for the cosine and sine of the sum of two angles: cos (x+ y) and
sin (x+ y). First, we know that they are the real and imaginary parts, respectively, of ei(x+y), that is,

ei(x+y) = cos (x+ y) + i sin (x+ y). (5)

But notice that this exponential can be written alternatively as a product of exponentials, namely

ei(x+y) = eix eiy. (6)

Using Euler’s formula (1) for the exponentials on the right-hand side of (6), we have for their product:

ei(x+y) = (cosx+ i sinx) (cos y + i sin y),

= cosx cos y + i cosx sin y + i sinx cos y + i2 sinx sin y,

= cosx cos y − sinx sin y + i (sinx cos y + cosx sin y). (7)

Comparing (7) to (5), the real part of the right-hand side must equal cos (x+ y), while the imaginary part must
equal sin (x+ y), giving us the usual formulas:

cos (x+ y) = cosx cos y − sinx sin y, and sin (x+ y) = sinx cos y + cosx sin y. (8)

Replacing y by −y in each case yields the appropriate relations for the sine and cosine of the difference of two
angles, recalling that the cosine is even, cos (−y) = cos y and the sine is odd, sin (−y) = − sin y (causing a change
in sign of the second term in each case):

cos (x− y) = cosx cos y + sinx sin y, and sin (x− y) = sinx cos y − cosx sin y. (9)

These formulas are worth their weight in gold! From them follow many other identities, as we now show.
For example, letting x = y = θ in these two expressions gives the double-angle formulas:

cos (2θ) = cos2 θ − sin2 θ, and sin (2θ) = 2 sin θ cos θ. (10)

Letting x = y = θ/2 gives expressions involving half-angles, namely,

cos θ = cos2 (θ/2)− sin2 (θ/2), and sin θ = 2 sin (θ/2) cos (θ/2). (11)

Substituting sin2 (θ/2) = 1− cos2 (θ/2) in the first of equations (11) yields after a little algebra:

cos2 (θ/2) =
1 + cos θ

2
,

or

cos (θ/2) = ±
√

1 + cos θ

2
. (12)

Substituting instead cos2 (θ/2) = 1− sin2 (θ/2) in the first of equations (11) yields

sin2 (θ/2) =
1− cos θ

2
,
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or

sin (θ/2) = ±
√

1− cos θ

2
. (13)

Returning to equations (8), we can use the first to obtain

cos (x+ y) + cos (x− y) = cosx cos y − sinx sin y + cosx cos y + sinx sin y = 2 cosx cos y,

where y was replaced by −y to obtain the first equality. In this equation, set α = x + y, and β = x − y. These
two linear equations can be solved for x and y in terms of α and β to obtain x = (α + β)/2, and y = (α − β)/2,
and making these substitutions in the last equation leads to another useful formula:

cosα + cosβ = 2 cos [(α+ β)/2] cos [(α− β)/2]. (14)

If we instead use the first of equations (8) to subtract the cosines of two angles, we get

cos (x+ y) − cos (x− y) = cosx cos y − sinx sin y − cosx cos y − sinx sin y = −2 sinx sin y,

and again introducing α = x+ y, and β = x− y, solving for x and y, and substituting appropriately, we obtain

cosα − cosβ = −2 sin [(α+ β)/2] cos [(α− β)/2]. (15)

Similarly, the second equation of (8) can be used to obtain

sin (x+ y) + sin (x− y) = sinx cos y + cosx sin y + sinx cos y − cosx sin y = 2 sinx cos y.

Again introducing α = x + y, and β = x − y, solving them for x and y, and substituting into the last equation
yields

sinα + sinβ = 2 sin [(α+ β)/2] cos [(α− β)/2], (16)

in agreement with the formula given, for example, in Appendix E of the physics textbook [2], where it is used in
Section 16-10 on wave interference to write the superposition (sum) of two traveling waves in a more useful form.
For completeness, replacement of β by −β in (16) yields the difference of sines:

sinα − sinβ = 2 sin [(α− β)/2] cos [(α+ β)/2]. (17)

It is perhaps worthwhile to gather together the last four formulas for the sums and differences of the cosines and
sines of two angles:

cosα + cosβ = 2 cos [(α+ β)/2] cos [(α− β)/2], (18)

cosα − cosβ = −2 sin [(α+ β)/2] sin [(α− β)/2], (19)

sinα + sinβ = 2 sin [(α+ β)/2] cos [(α− β)/2], (20)

sinα − sinβ = 2 sin [(α− β)/2] cos [(α+ β)/2]. (21)

Notice that if we divide equation (20) by (18) we obtain the interesting result that

sinα + sinβ

cosα + cosβ
= tan [(α+ β)/2]. (22)

Replacing β by −β (or dividing equation (21) by (18)) then yields

sinα − sinβ

cosα + cosβ
= tan [(α− β)/2]. (23)

Returning to Euler’s formula, the following problem recently surfaced in a trigonometry course: students were
asked in a computer-generated problem to “simplify” 16 sin8 x. Our approach will involve an application of the
binomial theorem, so we have listed the binomial coefficients up to n = 9 in Pascal’s triangle, illustrated in
Figure 1. Begin by replacing sinx by its complex representation (29) to obtain

16 sin8 x = 16

(
eix − e−ix

2i

)8

.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

Figure 1: Pascal’s Triangle

Now apply the binomial theorem for n = 8, using the second from the last row of Pascal’s triangle:

16 sin8 x =
16

(2i)8
(
eix − e−ix

)8
,

=
16

256

(
e8ix − 8 e7ix e−ix + 28 e6ix e−2ix − 56 e5ix e−3ix + 70 e4ix e−4ix

− 56 e3ix e−5ix + 28 e2ix e−6ix − 8 eix e−7ix + e−8ix
)
,

=
1

16

(
e8ix − 8 e6ix + 28 e4ix − 56 e2ix + 70 − 56 e−2ix + 28 e−4ix − 8 e−6ix + e−8ix

)

=
1

16

[ (
e8ix + e−8ix

)
− 8

(
e6ix + e−6ix

)
+ 28

(
e4ix + e−4ix

)
− 56

(
e2ix + e−2ix

)
+ 70

]
.

In the last equation, we recognize from the complex exponential representation (29) of the cosine function that
for any integer k:

(
ekix + e−kix

)
= 2 cos (kx), so we have:

16 sin8 x =
1

16

[
2 cos (8x)− 8 · 2 cos (6x) + 28 · 2 cos (4x)− 56 · 2 cos (2x) + 70

]
,

or, factoring out a common factor of 2:

16 sin8 x =
1

8

[
cos (8x)− 8 cos (6x) + 28 cos (4x)− 56 cos (2x) + 35

]
, (24)

for the final result. This form of the answer contains no products of cosine functions. The actual form of the
answer given by the computer module, however, did not include the cos (6x) term. To obtain the computer’s form
of the answer from ours requires considerable manipulation of this term:

cos (6x) = cos (2x+ 4x) = cos (2x) cos (4x) − sin (2x) sin (4x),

= cos (2x) cos (4x) − sin (2x)
[
2 sin (2x) cos (2x)

]
,

= cos (2x) cos (4x) − 2 sin2 (2x) cos (2x),

= cos (2x) cos (4x) − 2
[
1 − cos2 (2x)

]
cos (2x),

= cos (2x) cos (4x) − 2 cos (2x) + 2 cos2 (2x) cos (2x),

= cos (2x) cos (4x) − 2 cos (2x) + 2

[
1 + cos (4x)

2

]
cos (2x),

= 2 cos (2x) cos (4x) − cos (2x).

(25)
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Substituting this expression for cos (6x) in our result (24) yields

16 sin8 x =
1

8

{
cos (8x)− 8

[
2 cos (2x) cos (4x) − cos (2x)

]
+ 28 cos (4x)− 56 cos (2x) + 35

}
,

which reduces after collecting like terms to:

16 sin8 x =
1

8

[
cos (8x)− 16 cos (2x) · cos (4x) + 28 cos (4x)− 48 cos (2x) + 35

]
, (26)

the form of the answer given by the computer module, which exchanges the cos (6x) term in (24) for a term
containing a product of cosine terms.

If, in Euler’s formula (1), either i is replaced by −i, or θ is replaced by −θ, then since cos (−θ) = cos θ, and
sin (−θ) = − sin θ, we obtain by either method:

e−iθ = cos θ − i sin θ. (27)

The sum and difference of (1) and (27) yield:

eiθ + e−iθ = 2 cos θ, and eiθ − e−iθ = 2i sin θ, (28)

respectively, from which we get

cos θ =
eiθ + e−iθ

2
, and sin θ =

eiθ − e−iθ

2i
, (29)

respectively. These formulas are useful for finding indefinite integrals of the trigonometric functions.
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