A Note on Euler's Formula

Dr. Mike Wilkes
ASC Chastain
Indian River State College
4/1/2014

1 Euler's Formula

The general complex exponential function e^{z}, where z is any complex number of the form $(a+i b)$, has been called "the most important function in mathematics" by the author of a highly regarded advanced mathematics text [1, Prologue]. Euler's formula relates the special complex exponential function $e^{i \theta}$ to the familiar trigonometric functions $\cos \theta$ and $\sin \theta$. It is simple to state, yet profound in its consequences:

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{1}
\end{equation*}
$$

It can be derived (in a mathematically non-rigorous, that is, formal manner) using ideas from a first course in calculus. For those readers who have not taken a calculus course, or otherwise have no interest in such a derivation, please skip ahead to the next Section on applications of the formula.

To derive the relation, consider the complex function

$$
\begin{equation*}
u(\theta)=\cos \theta+i \sin \theta \tag{2}
\end{equation*}
$$

Take the derivative of both sides with respect to θ to obtain

$$
u^{\prime}(\theta)=-\sin \theta+i \cos \theta
$$

Now, notice that $i^{2}=-1$, so the right-hand side of this result can be written as

$$
u^{\prime}(\theta)=i^{2} \sin \theta+i \cos \theta
$$

or, after factoring out the common factor of i and rearranging:

$$
u^{\prime}(\theta)=i(\cos \theta+i \sin \theta)
$$

But on the right-hand side, the factor multiplying i is just the original function $u(\theta)$, that is,

$$
\begin{equation*}
u^{\prime}(\theta)=i u(\theta) \tag{3}
\end{equation*}
$$

Dividing both sides by $u(\theta)$, and recalling that

$$
\frac{u^{\prime}(\theta)}{u(\theta)}=\frac{d}{d \theta}\{\ln [u(\theta)]\}
$$

it follows from (3) that

$$
\frac{d}{d \theta}\{\ln [u(\theta)]\}=i
$$

which is easily integrated with respect to θ to get the indefinite integral

$$
\ln [u(\theta)]=i \theta+C_{0}
$$

where C_{0} is an arbitrary constant. Rewriting this in exponential form yields

$$
u(\theta)=e^{i \theta+C_{0}}=e^{i \theta} e^{C_{0}}=C e^{i \theta}
$$

where $C=e^{C_{0}}$ is another arbitrary constant. But from the definition (2), we see that we must have $u(0)=$ $\cos 0+i \sin 0=1$, so from the last equation $u(0)=C e^{i 0}=C=1$ since $e^{0}=1$, leaving

$$
\begin{equation*}
u(\theta)=e^{i \theta}=\cos \theta+i \sin \theta \tag{4}
\end{equation*}
$$

where the second equality results from definition (2), thus completing a formal derivation of Euler's formula (1).

2 Elementary Applications

Suppose you want the trigonometric identities for the cosine and sine of the sum of two angles: $\cos (x+y)$ and $\sin (x+y)$. First, we know that they are the real and imaginary parts, respectively, of $e^{i(x+y)}$, that is,

$$
\begin{equation*}
e^{i(x+y)}=\cos (x+y)+i \sin (x+y) \tag{5}
\end{equation*}
$$

But notice that this exponential can be written alternatively as a product of exponentials, namely

$$
\begin{equation*}
e^{i(x+y)}=e^{i x} e^{i y} \tag{6}
\end{equation*}
$$

Using Euler's formula (1) for the exponentials on the right-hand side of (6), we have for their product:

$$
\begin{align*}
e^{i(x+y)} & =(\cos x+i \sin x)(\cos y+i \sin y) \\
& =\cos x \cos y+i \cos x \sin y+i \sin x \cos y+i^{2} \sin x \sin y \\
& =\cos x \cos y-\sin x \sin y+i(\sin x \cos y+\cos x \sin y) \tag{7}
\end{align*}
$$

Comparing (7) to (5), the real part of the right-hand side must equal $\cos (x+y)$, while the imaginary part must equal $\sin (x+y)$, giving us the usual formulas:

$$
\begin{equation*}
\cos (x+y)=\cos x \cos y-\sin x \sin y, \quad \text { and } \quad \sin (x+y)=\sin x \cos y+\cos x \sin y \tag{8}
\end{equation*}
$$

Replacing y by $-y$ in each case yields the appropriate relations for the sine and cosine of the difference of two angles, recalling that the cosine is even, $\cos (-y)=\cos y$ and the sine is odd, $\sin (-y)=-\sin y$ (causing a change in sign of the second term in each case):

$$
\begin{equation*}
\cos (x-y)=\cos x \cos y+\sin x \sin y, \quad \text { and } \quad \sin (x-y)=\sin x \cos y-\cos x \sin y \tag{9}
\end{equation*}
$$

These formulas are worth their weight in gold! From them follow many other identities, as we now show.
For example, letting $x=y=\theta$ in these two expressions gives the double-angle formulas:

$$
\begin{equation*}
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta, \quad \text { and } \quad \sin (2 \theta)=2 \sin \theta \cos \theta \tag{10}
\end{equation*}
$$

Letting $x=y=\theta / 2$ gives expressions involving half-angles, namely,

$$
\begin{equation*}
\cos \theta=\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2), \quad \text { and } \quad \sin \theta=2 \sin (\theta / 2) \cos (\theta / 2) \tag{11}
\end{equation*}
$$

Substituting $\sin ^{2}(\theta / 2)=1-\cos ^{2}(\theta / 2)$ in the first of equations (11) yields after a little algebra:

$$
\cos ^{2}(\theta / 2)=\frac{1+\cos \theta}{2}
$$

or

$$
\begin{equation*}
\cos (\theta / 2)= \pm \sqrt{\frac{1+\cos \theta}{2}} \tag{12}
\end{equation*}
$$

Substituting instead $\cos ^{2}(\theta / 2)=1-\sin ^{2}(\theta / 2)$ in the first of equations (11) yields

$$
\sin ^{2}(\theta / 2)=\frac{1-\cos \theta}{2}
$$

or

$$
\begin{equation*}
\sin (\theta / 2)= \pm \sqrt{\frac{1-\cos \theta}{2}} \tag{13}
\end{equation*}
$$

Returning to equations (8), we can use the first to obtain

$$
\cos (x+y)+\cos (x-y)=\cos x \cos y-\underline{\sin x} \sin y+\cos x \cos y+\underline{\sin x \sin y}=2 \cos x \cos y
$$

where y was replaced by $-y$ to obtain the first equality. In this equation, set $\alpha=x+y$, and $\beta=x-y$. These two linear equations can be solved for x and y in terms of α and β to obtain $x=(\alpha+\beta) / 2$, and $y=(\alpha-\beta) / 2$, and making these substitutions in the last equation leads to another useful formula:

$$
\begin{equation*}
\cos \alpha+\cos \beta=2 \cos [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2] \tag{14}
\end{equation*}
$$

If we instead use the first of equations (8) to subtract the cosines of two angles, we get

$$
\cos (x+y)-\cos (x-y)=\underline{\cos x \cos y-\sin x \sin y-\underline{\cos } x \cos y-\sin x \sin y=-2 \sin x \sin y}
$$

and again introducing $\alpha=x+y$, and $\beta=x-y$, solving for x and y, and substituting appropriately, we obtain

$$
\begin{equation*}
\cos \alpha-\cos \beta=-2 \sin [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2] \tag{15}
\end{equation*}
$$

Similarly, the second equation of (8) can be used to obtain

$$
\sin (x+y)+\sin (x-y)=\sin x \cos y+\cos x \sin y+\sin x \cos y-\cos x \sin y=2 \sin x \cos y
$$

Again introducing $\alpha=x+y$, and $\beta=x-y$, solving them for x and y, and substituting into the last equation yields

$$
\begin{equation*}
\sin \alpha+\sin \beta=2 \sin [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2] \tag{16}
\end{equation*}
$$

in agreement with the formula given, for example, in Appendix E of the physics textbook [2], where it is used in Section 16-10 on wave interference to write the superposition (sum) of two traveling waves in a more useful form. For completeness, replacement of β by $-\beta$ in (16) yields the difference of sines:

$$
\begin{equation*}
\sin \alpha-\sin \beta=2 \sin [(\alpha-\beta) / 2] \cos [(\alpha+\beta) / 2] \tag{17}
\end{equation*}
$$

It is perhaps worthwhile to gather together the last four formulas for the sums and differences of the cosines and sines of two angles:

$$
\begin{align*}
\cos \alpha+\cos \beta & =2 \cos [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2] \tag{18}\\
\cos \alpha-\cos \beta & =-2 \sin [(\alpha+\beta) / 2] \sin [(\alpha-\beta) / 2] \tag{19}\\
\sin \alpha+\sin \beta & =2 \sin [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2] \tag{20}\\
\sin \alpha-\sin \beta & =2 \sin [(\alpha-\beta) / 2] \cos [(\alpha+\beta) / 2] \tag{21}
\end{align*}
$$

Notice that if we divide equation (20) by (18) we obtain the interesting result that

$$
\begin{equation*}
\frac{\sin \alpha+\sin \beta}{\cos \alpha+\cos \beta}=\tan [(\alpha+\beta) / 2] \tag{22}
\end{equation*}
$$

Replacing β by $-\beta$ (or dividing equation (21) by (18)) then yields

$$
\begin{equation*}
\frac{\sin \alpha-\sin \beta}{\cos \alpha+\cos \beta}=\tan [(\alpha-\beta) / 2] \tag{23}
\end{equation*}
$$

Returning to Euler's formula, the following problem recently surfaced in a trigonometry course: students were asked in a computer-generated problem to "simplify" $16 \sin ^{8} x$. Our approach will involve an application of the binomial theorem, so we have listed the binomial coefficients up to $n=9$ in Pascal's triangle, illustrated in Figure 1. Begin by replacing $\sin x$ by its complex representation (29) to obtain

$$
16 \sin ^{8} x=16\left(\frac{e^{i x}-e^{-i x}}{2 i}\right)^{8}
$$

```
                        1
                    1
                    1 2 1
                    1
                        1
                1
            1
        1
    1
1
```

Figure 1: Pascal's Triangle

Now apply the binomial theorem for $n=8$, using the second from the last row of Pascal's triangle:

$$
\begin{aligned}
16 \sin ^{8} x & =\frac{16}{(2 i)^{8}}\left(e^{i x}-e^{-i x}\right)^{8} \\
= & \frac{16}{256}\left(e^{8 i x}-8 e^{7 i x} e^{-i x}+28 e^{6 i x} e^{-2 i x}-56 e^{5 i x} e^{-3 i x}+70 e^{4 i x} e^{-4 i x}\right. \\
& \left.\quad-56 e^{3 i x} e^{-5 i x}+28 e^{2 i x} e^{-6 i x}-8 e^{i x} e^{-7 i x}+e^{-8 i x}\right) \\
& =\frac{1}{16}\left(e^{8 i x}-8 e^{6 i x}+28 e^{4 i x}-56 e^{2 i x}+70-56 e^{-2 i x}+28 e^{-4 i x}-8 e^{-6 i x}+e^{-8 i x}\right) \\
& =\frac{1}{16}\left[\left(e^{8 i x}+e^{-8 i x}\right)-8\left(e^{6 i x}+e^{-6 i x}\right)+28\left(e^{4 i x}+e^{-4 i x}\right)-56\left(e^{2 i x}+e^{-2 i x}\right)+70\right]
\end{aligned}
$$

In the last equation, we recognize from the complex exponential representation (29) of the cosine function that for any integer $k:\left(e^{k i x}+e^{-k i x}\right)=2 \cos (k x)$, so we have:

$$
16 \sin ^{8} x=\frac{1}{16}[2 \cos (8 x)-8 \cdot 2 \cos (6 x)+28 \cdot 2 \cos (4 x)-56 \cdot 2 \cos (2 x)+70]
$$

or, factoring out a common factor of 2 :

$$
\begin{equation*}
16 \sin ^{8} x=\frac{1}{8}[\cos (8 x)-8 \cos (6 x)+28 \cos (4 x)-56 \cos (2 x)+35] \tag{24}
\end{equation*}
$$

for the final result. This form of the answer contains no products of cosine functions. The actual form of the answer given by the computer module, however, did not include the $\cos (6 x)$ term. To obtain the computer's form of the answer from ours requires considerable manipulation of this term:

$$
\begin{align*}
\cos (6 x) & =\cos (2 x+4 x)=\cos (2 x) \cos (4 x)-\sin (2 x) \sin (4 x) \\
& =\cos (2 x) \cos (4 x)-\sin (2 x)[2 \sin (2 x) \cos (2 x)] \\
& =\cos (2 x) \cos (4 x)-2 \sin ^{2}(2 x) \cos (2 x) \\
& =\cos (2 x) \cos (4 x)-2\left[1-\cos ^{2}(2 x)\right] \cos (2 x) \tag{25}\\
& =\cos (2 x) \cos (4 x)-2 \cos (2 x)+2 \cos ^{2}(2 x) \cos (2 x) \\
& =\cos (2 x) \cos (4 x)-2 \cos (2 x)+\not 2\left[\frac{1+\cos (4 x)}{\not 2}\right] \cos (2 x) \\
& =2 \cos (2 x) \cos (4 x)-\cos (2 x)
\end{align*}
$$

Substituting this expression for $\cos (6 x)$ in our result (24) yields

$$
16 \sin ^{8} x=\frac{1}{8}\{\cos (8 x)-8[2 \cos (2 x) \cos (4 x)-\cos (2 x)]+28 \cos (4 x)-56 \cos (2 x)+35\}
$$

which reduces after collecting like terms to:

$$
\begin{equation*}
16 \sin ^{8} x=\frac{1}{8}[\cos (8 x)-16 \cos (2 x) \cdot \cos (4 x)+28 \cos (4 x)-48 \cos (2 x)+35] \tag{26}
\end{equation*}
$$

the form of the answer given by the computer module, which exchanges the $\cos (6 x)$ term in (24) for a term containing a product of cosine terms.

If, in Euler's formula (1), either i is replaced by $-i$, or θ is replaced by $-\theta$, then since $\cos (-\theta)=\cos \theta$, and $\sin (-\theta)=-\sin \theta$, we obtain by either method:

$$
\begin{equation*}
e^{-i \theta}=\cos \theta-i \sin \theta \tag{27}
\end{equation*}
$$

The sum and difference of (1) and (27) yield:

$$
\begin{equation*}
e^{i \theta}+e^{-i \theta}=2 \cos \theta, \quad \text { and } \quad e^{i \theta}-e^{-i \theta}=2 i \sin \theta, \tag{28}
\end{equation*}
$$

respectively, from which we get

$$
\begin{equation*}
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \tag{29}
\end{equation*}
$$

respectively. These formulas are useful for finding indefinite integrals of the trigonometric functions.

References

[1] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, NY, 2nd ed., 1974.
[2] D. Halliday, R. Resnick, and J. Walker, Principles of Physics Extended, Wiley, 9th ed., 2010.

