Motion on an Inclined Plane

Mike Wilkes

10/7/2013

Figure 1 illustrates an object of mass m at some time t, positioned on an inclined plane that makes an angle θ ($\angle A D E$ in the figure) with a horizontal line thru successive points A, D, and B . The force of gravity, equal to $m \boldsymbol{g}$ near the Earth's surface, is vertically downward (perpendicular to the horizontal line), acting thru the center of mass C of the block. The line CB thru the center of mass is parallel to the inclined plane, meeting the horizontal line at point B . Line CH thru C is perpendicular to the inclined plane. The horizontal line is transverse (a concept from elementary geometry) to the two parallel lines ED and CB , hence the angles $\angle A D E$ and $\angle A B C$ must be equal, and equal to the angle θ.

Since $\triangle B A C$ is a right triangle, it follows that $\angle A C B$ is the complement of $\angle A B C=\theta$ (the two must add up to 90°), hence $\angle A C B=90^{\circ}-\theta$, as shown in the Figure. Then, since $\triangle C H G$ is also a right triangle, $\angle H C G$ of that triangle must be complementary to $\angle A C B$, that is, $\angle H C G=90^{\circ}-\left(90^{\circ}-\theta\right)=\theta$. Thus, the gravitational force (or weight) vector $m \boldsymbol{g}$ makes an angle θ with respect to the line CH perpendicular to the inclined plane. Here, \boldsymbol{g} is the gravitational acceleration vector near earth's surface of magnitude $g=9.80$ $\mathrm{m} / \mathrm{s}^{2}=32.2 \mathrm{ft} / \mathrm{s}^{2}$. This important angular relation is sometimes difficult to see in textbook diagrams, but is hopefully made clear in Figure 1.

Figure 1: Angle Relations for a Mass m on Inclined Plane.

In Figure 2 on the next page, the top figure illustrates the motion of an object of mass m down an inclined plane with friction force f acting upward parallel to the incline, opposing the downward motion. In this example, the only other external forces on the block are its weight $m \boldsymbol{g}$ vertically downward, and a normal force \boldsymbol{F}_{N} exerted by the surface of the plane upward, perpendicular to the incline.

The bottom diagram of Figure 2 illustrates motion $u p$ the plane, requiring an additional upward force \boldsymbol{F} parallel to the incline to produce the motion, while the friction force \boldsymbol{f}, opposing this upward motion, now
acts downward parallel to the incline.

Figure 2: The friction force \boldsymbol{f} may act in either direction, always opposite to the direction of motion of mass m.

