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Preface

This document was originally created simply as a guide and tutorial on the use of the
TI-83 and TI-84 graphing calculators for statistics calculations. It was not intended to
replace the actual learning of the material required for the Elementary Statistics course
STA2023 at Indian River State College. This expanded version has added some notes
that may be helpful in understanding the subject, but should be considered as no more
than a supplement to the material of the textbook. It has in fact become so unwieldy
by now that I expect the probability of being read by any student, or instructor for that
matter, is roughly the same as that of reading the actual textbook.

Chapters and their titles correspond to those of reference [1], being used as of this
writing in STA2023 (the Fall semester 2014). The material typically covered in the
course from chapters 1 and 4 does not require a graphing calculator. Our presentation
of calculator applications in the remaining course chapters 2–9, and 13, is by no means
comprehensive. For example, included under Chapter 5 on discrete distributions are
calculations involving only the binomial distribution, and in Chapter 6 on continuous
distributions only those for the normal distribution; we have been similarly selective of
topics from the other chapters, as will be obvious. It came to our attention after com-
pleting this work that a detailed manual on graphing calculator applications written to
accompany the older 6th edition of Mann’s textbook can be read online, or downloaded,
from the website http://spaces.imperial.edu/rick.castrapel/files/m119/ti83_

84_manualMann.pdf It is more than three times the length of this document, including
a number of topics not covered in STA2023, but an excellent reference for details and
additional applications.

For Chapter 9 we have attempted to summarize some of the main points concerning
hypothesis testing before discussing calculator applications. Impatient readers may wish
to skip to the last subsection of that chapter to begin using their calculators, but output
from the calculator applications does not include the decision to reject or accept an hy-
pothesis. That final step requires understanding of material either from the textbook, or
from our summary preceding the calculator applications to effectively use the calculator
results in making this decision.

There are sometimes subtle differences between operations on the TI-83 and TI-84
calculators, which we take some care to point out; there is at least one useful application
on the TI-84 that is not on the TI-83 (the inverse t distribution, invT), and directions
are given for obtaining such a program for the TI-83.

http://spaces.imperial.edu/rick.castrapel/files/m119/ti83_84_manualMann.pdf
http://spaces.imperial.edu/rick.castrapel/files/m119/ti83_84_manualMann.pdf
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Chapter 1: Introduction

A graphing calculator is not required for the first chapter. The chapter introduces
many terms and their definitions, however, that will be used throughout the course.
You should read carefully the definitions of descriptive and inferential statistics, and
understand how they are different. Basically, descriptive statistics involves methods of
organizing and displaying data using tables and graphs, and calculating measures of the
data that attempt to characterize a sometimes immense number of data points by just a
few numbers, such as the mean, median, mode, range, variance, and standard deviation
(which are discussed in detail in chapters that follow). Inferential statistics on the other
hand introduces the ideas of population data, and subsets (smaller sets selected from the
population) of this data called sample data. The goal of inferential statistics is to attempt
to derive information about the the population from the smaller sample set, and this
requires the development of methods that allow us to infer such population information
using the sample data. The subjects of probability and probability distributions provide
a link between descriptive and inferential statistics, and are discussed in Chapters 4
through 7. Chapter 8 and the chapters following it delve into some of the methods used
in inferential statistics.

One problem that seems to occur often, especially in the online WileyPlus homework
problems, is that it is difficult to discern whether a given data set represents a population,
or just a sample from some population. At this writing (7/22/15) the author does not
have a foolproof answer to this problem. Generally, if the word “all” is used in connection
with the data set, then it likely represents a population, and if you see the word “sample”
in connection with the data set, then it represents a sample from a population. If these
words do not appear in the problem statement, then flip a coin to make your decision
between population and sample (sorry, that is the best I can offer at the moment).
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Chapter 2: Organizing and Graphing Data

• Population or sample data are entered into a list by pressing the [STAT] key, then
under the [EDIT] tab selecting [1:Edit]. This places you at the first element of list
L1, where you can begin entering data (see next paragraph). To go to another list,
scroll right using the [I] key to one of the five other lists L2, L3, L4, L5, or L6
(NOTE: scroll left by using the [J] key, scroll up using the [N] key, or scroll down
using the [H] key).

You may find that you need to clear previously entered data from a list before
entering new data: to do this, scroll up to the name of the given list, for example,
L1, L2, etc., press the [CLEAR] key, then press the [ENTER] key at the bottom
right corner of the keyboard. This returns you to the first entry of the list, and
you should find that all the previous data have disappeared.

To enter new data in an empty list, go to the first position under the list name. In
the window below the list will appear, for example, L1(1)=, if you are in list L1.
Use the keyboard to input the number you want and press [ENTER]. The number
will be placed in the first entry of the list, and cursor repositioned at the second
entry point. Repeat until all of your data have been entered. Press [2ND], then
[MODE], to exit from [STAT] and return to the homescreen (the main window
where calculations are usually performed). To return to the homescreen from
any application, you can always press [2ND] then [MODE] to quit the application
(notice the word QUIT above the [MODE] key).

Some applications/programs will require the input of a list . Pressing the [2ND]
key, then the number [1] key, will input the list L1 (L1 appears above the [1] key)
at the point of insertion of input , and similarly for the other number keys [2] thru
[6] to input lists L2 thru L6 on the homescreen.

• Raw (ungrouped) data require one list, say, L1.

• Class (grouped) data require two lists, say, L1 and L2, the first containing the class
midpoints , the second containing the corresponding class frequencies . You may
have to calculate the midpoints as “midpoint = (upper limit + lower limit)/2”, if
they are not given in the problem statement. Read the textbook carefully . . . there
is a subtle, but important, difference between the definitions of upper and lower
limits , and upper and lower boundaries (the upper boundary of one class is the
same as the lower boundary of the next class, not so with the upper and lower
limits). To remember this, boundaries are continuous, but limits have gaps. See
Section 2.2.1 of Reference [1].
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Chapter 3: Numerical Descriptive Measures

Given either ungrouped or grouped data for a single variable, we typically want to
compute (i) measures of central tendency like the mean, the median , and the mode, (ii)
measures of the dispersion or spread in the data, like the variance and standard deviation
(which is the square root of the variance), and (iii) the first and third quartiles Q1 and
Q3 (used to calculate the interquartile range IQR = Q3 −Q1).

All of these statistics except the mode and variance can be found by first entering
your ungrouped data into L1, or for grouped data entering the midpoints into L1 and
frequencies into L2. After entering the data:

1. For either the TI-83 or TI-84, press the [STAT] key, scroll over to the [CALC]
column, scroll to 1-Var Stats and press [ENTER].

2. On the TI-84, for ungrouped data in L1, input L1 for List and leave FreqList

empty. For grouped data with midpoints in L1 and frequencies in L2, input L1 for
List, and L2 for FreqList.

3. On the TI-83, the function 1-Var Stats will appear on your homescreen, and you
must then input either L1, or the comma–separated lists L1,L2 for grouped data.

4. Press [ENTER]. The output will include the mean x, the sample standard deviation
Sx, the population standard deviation σx, the sample size n, the minimum and
maximum values, minX and maxX, of the data, the first and third quartiles Q1 and
Q3, and the median, Med (which is also the second quartile, Q2). Both sample
and population standard deviations are displayed, since the calculator has no way
of knowing whether the data is from a population, or a sample of a population.
Only you can determine which type of data you have in order to choose the correct
standard deviation.

5. The sample and population variances are not displayed, but can be obtained from
the Sx and σx standard deviations output from 1-Var Stats by pressing [VARS],
selecting Statistics from the VARS tab, then selecting either Sx or σx from the
XY tab; Sx or σx will appear on the homescreen, and can be squared to get the
sample or population variance by pressing the [x2] key.

6. To compute the sample variance directly, or if you need only a single statistic of
the data, like the mean or standard deviation: press [2ND], then [STAT] (putting
you in the LIST menu, as indicated above the [STAT] key), scroll right to the MATH

tab, then find the statistic you want in the list that is displayed. For example,
if you wish to compute the sample variance of your data (be warned, there is no
option under the MATH tab to calculate the population variance), select variance.
This places variance on your homescreen, where you must then input the list of
data, say, L1, by pressing [2ND], then the number [1] key. For grouped data, input
the comma–separated lists L1,L2. The output is the variance of your data.
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Your calculator does not provide an application to determine directly the mode or
modes of a data set. However, you can rank-order your list in either ascending (smallest
to largest) order, or descending (largest to smallest) order, by pressing [2ND], [STAT]
(putting you in the LIST menu), then scrolling to the OPS tab. If you select SortA, then
press [2ND] followed by [1] to input L1 in the command that appears on the homescreen,
it will replace your list L1 with the same data sorted from smallest to largest. For
grouped data, you should input the frequency list L2 instead, which replaces L2 by the
same frequency data sorted from smallest to largest. The mode of the data is either
the data element that appears the most number of times in your rank-ordered data list
L1, or the midpoint with highest frequency that appears in your rank-ordered frequency
list L2 (if more than one data element appears the same maximum number of times,
or more than one midpoint appears with a frequency having the same maximum value,
then there will be more than one mode). Note that by choosing SortD from the OPS

tab, you obtain data ordered from largest to smallest.
Programs have been written that will calculate directly the mode, or modes, of a list

of raw data. One of these can be downloaded from the Calcblog website:

http://www.calcblog.com/resources

by scrolling down to Downloads, looking under Calcblog Software, and selecting the TI-
83 and TI-84 Mode Program link. This program is written in TI-calculator assembly
language, but it can be saved to your computer as a text file (that will be basically
incomprehensible), and then transferred to your calculator using the TI Connect software.
Instructions for making the transfer can be found on the Calcblog website, above, or on
the TI website

http://www.ticalc.org

under the ”Help” link, where you should select the ”Learn the Basics” link. Another
link to detailed instructions can be found at

http://mikewilkes-irsc.weebly.com/probability-and-statistics.html

where the file is also available for download.

http://www.calcblog.com/resources
http://www.ticalc.org
http://mikewilkes-irsc.weebly.com/probability-and-statistics.html
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Mean, Standard Deviation, and Variance on Non-Graphing TI
Calculators

This topic lies outside the primary objective of discussing only TI graphing calculator
applications, but may be of interest to students who would like to analyze data on older,
non-graphing Texas Instrument calculators.

• TI-30X. First press the [2nd] key, then the [7] key (with the entry CSR above it,
standing for Clear Statistics Register) to clear any previously entered data (if no
data has been entered you will get an ERROR message . . . just ignore this and go
on). For raw data, key in a data value; for class data, key in the midpoint of a class.
If the data value occurs with frequency greater than 1, or if it is a class midpoint,
press [2nd] then [1/x] (FRQ is above this key) and enter the frequency of this data
point or class. For data points of frequency 1, that is, single distinct values of raw
data, this step can be ignored. Finally, press the [Σ +] key to complete entry of the
data point/class midpoint, and its frequency, into the calculator. The calculator
will echo n = the number of data values entered so far (equal to the sum of the
frequencies entered). To remove an incorrectly entered data value and frequency,
press the [Σ−] key. Continue entering one point at a time, pressing [2nd] then
[1/x] to enter the associated frequency, then pressing the [Σ +] key to enter the
point and its frequency into the calculator. After entering all the data points/class
midpoints, press [2nd] then the [x2] key to find the mean value x (which appears
above the [x2] key), press [2nd] then the [

√
x ] key to find the sample standard

deviation (σxn−1 is above this key), or press [2nd] then the division key [÷] to
find the population standard deviation (σxn is above this key). To find the sample
variance, press [2nd] then [

√
x ] to first obtain the sample standard deviation, then

press the [x2] key to find the sample variance (it is, by definition, the square of the
sample standard deviation). Similar steps will give you the population variance.

• TI-35X. Data entry and calculations are very similar to those for the TI-30X,
except we begin by pressing the [3rd] key, then the [xIJy] key (above which you will
find STAT 1), to enter single variable data entry mode. Then press [2nd] followed
by the [xIJy] key to clear any previous data (notice that CSR appears above xIJy
on this key). Ignore any ERROR message, it just means there was no previous
data entered. Begin entering data points exactly as was done for the TI-30X, that
is, enter a data point/class midpoint, then press [2nd] followed by the [1/x] key
(which shows FRQ above it) to enter the associated frequency. Press the [Σ +]
key to complete entry of the data point/class midpoint, and its frequency, into the
calculator. Repeat until all data points/class midpoints, and their frequencies, have
been entered. Then, just as for the TI-30X, press [2nd] then the [x2] key to find the
mean value x, press [2nd] then the [

√
x ] key to find the sample standard deviation,

or press [2nd] then the division key [÷] to find the population standard deviation.
To find the population variance, press [2nd] then [÷] to first obtain the population
standard deviation, then press the [x2] key to find the population variance (it is,
by definition, the square of the population standard deviation). Similar steps will
give you the sample variance, as detailed above for the TI-30X.
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• TI-30X IIS. Both raw and class data can be input to determine the mean, stan-
dard deviation, and variance of the data. Begin by pressing [2nd], then [DATA]
(the entry above this key is [STAT]), scroll right to CLRDATA, then press [EN-
TER] to clear any previously entered data. You will be returned to a highlighted
1-VAR, in which case press [ENTER] again, to enter single variable data entry
mode. Now press [DATA] to begin entering data at X1=. If it is raw data, enter
the data point, scroll down to FRQ=, either leave this empty or enter the number
of times this point occurs in the data set, then scroll down again to X2=, and enter
the next data point. Continue until all data points have been entered. If it is class
data, enter the midpoint of class 1 at the X1= prompt, scroll down to FRQ=, and
enter the frequency associated with this class, then scroll down once more to X2=,
and enter the second class midpoint. Scroll down to enter at FRQ= the frequency
associated with the second class of your data. Continue until all class midpoint
and frequency data have been entered. As the final step, press the [STATVAR]
key which displays on the first line: n, the number of data points, or the sum of
all frequencies; x, the mean of the data; Sx, the standard deviation of a sample
survey data set; σx, the population standard deviation of a census data set; Σx,
the sum of all the x-values; and, Σx2, the sum of the squared data values. Scroll
to any one of these outputs, and its value will be displayed on the second line of
the screen. To calculate the sample variance, scroll to the right to Sx, then press
the [x2] key followed by [ENTER] to display its value. For the population variance,
scroll instead to σx, then press the [x2] key followed by [ENTER] to display its
value.
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Chapter 4: Probability

A discussion of problems involving probability requires a large number of definitions,
which we simply itemize and discuss very briefly here.

Experiments, Observations, and Outcomes

Experiment – a procedure or act of making an observation, which can be repeated
under precisely the same conditions. Simple experiments that are discussed often
in the text include flipping a coin, either once or a repeated number of times, and
rolling a six-sided die (a “die” is one of a pair of dice), either one or more times.

Outcome – the result of an observation. An outcome of flipping a coin once is either a
“head” or a “tail”, symbolized by an H or T. An outcome of flipping a coin twice
could be one of the following four pairs, either HH, HT, TH, or TT. An outcome
of tossing a die is one of the six numbers 1, 2, 3, 4, 5, or 6.

Random Experiment – an experiment whose outcomes cannot be predicted with
certainty prior to the performance of the experiment. However, the collection or
set of all possible outcomes is assumed to be known prior to the performance of the
experiment. It is further assumed that at least in principle the experiment can be
repeated indefinitely under the same conditions, and that outcomes of a repeat of
an experiment are unaffected by previous performances of the experiment.

Sample Space (of an Experiment) – a set, denoted by S, containing all possible
outcomes of an experiment. The sample space for the flip of a coin is the set of
two possible outcomes: S = {H,T}. The sample space for flipping a coin twice in
succession is S = {HH,HT, TH, TT}. The sample space for a single roll of a die
is S = {1, 2, 3, 4, 5, 6}.

Countable Sample Space – a sample space S containing a countable number of
outcomes: S = {o1, o2, o3, . . . , }, where oi is the ith outcome (the sequence of
three ”dots” terminating with a comma, called an ellipsis , indicates that there is
no upper bound on the number of outcomes). For a finite, countable sample space
with n outcomes: S = {o1, o2, o3, . . . , on}.

Event – any subset of S (including the improper subset S itself); that is, any set of
one or more outcomes of an experiment. The event for which there is no outcome
is called the impossible event, since no outcome is possible. It is represented by the
empty set ∅, since it contains no outcomes. The sample space S is also an event,
containing every possible event, and is called the certain or sure event since some
outcome is certain to occur.

Simple Event – an event containing only one outcome of an experiment. If the
sample space is countable, the ith simple event is usually denoted Ei = {oi}, i =
1, 2, 3, . . . ,. If the sample space is finite and countable, with n possible outcomes,
then Ei = {oi}, i = 1, 2, 3, . . . , n
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Compound Event – an event containing more than one outcome of an experiment. For
example, in a countable sample space, a possible event containing three outcomes
would be A = {o2, o4, o9}.

Algebra of Events – since events are sets , the set operations of union and intersection
apply to them:

Union of Events – for any events A and B, their union A ∪ B is the set of all
outcomes that are in A, together with all those in B not already included
in A. Stated differently, A∪B is the set of outcomes belonging to either A or
B, or both A and B (the event is the empty set ∅ if there are no outcomes in
either set A or B). Note that any outcome common to both A and B appears
only once in A ∪B (it should not be counted twice).

The union A ∪B is often read as the logical disjunction “(A orB)”, where A
is a statement defining event A, and B is a statement defining B. Recall from
truth tables that (A orB) is true when either A or B, or both, are true (and
false only when both are false), so we have the natural correspondence

A ∪B = A orB.

Intersection of Events – for any events A and B, their intersection A ∩ B is
the set of only those outcomes common to both A and B.

The intersection A ∩ B is often read as the logical conjunction “(A andB)”,
where A and B are now understood to be statements defining the events A
and B. Recall from truth tables that (A andB) is true only when both A and
B are true, and false otherwise, so we have the natural correspondence

A ∩B = A andB.

Complement of an Event – the event A containing only those events of the sample
space S that do not occur in event A. The complement A of A in S is sometimes
read “not A”, and if A is a statement defining event A, then its complement is
the logical negation ∼ A, which is false if A is true, and true if A is false. The
correspondence between set complement and logical negation of statements is thus

A =∼ A.

Union of an Event and Its Complement – the union of event A and its complement
A is the entire sample space S, since every outcome must be either in A or not
in A (in which case it is in its complement A). Therefore, S = A ∪ A. This is
equivalent to the logical statement that (A or ∼ A) is always true (it is always true
that a statement is either true or it is false).

Mutually Exclusive Events – two events A and B are mutually exclusive, if they
have no events in common, that is, if their intersection is empty: A∩B = ∅. This
is the equivalent to the logical statement that (A and ∼ A) is always false (it is
always false that a statement is both true and false).



12

Simple Events of Countable Sample Spaces – simple events Ei of a countable
sample space are mutually exclusive, Ei∩Ej = ∅ for all values of i and j, since every
outcome appears in one and only one simple event. The union of simple events of a
countable sample space is equal to the sample space S itself: S = E1 ∪E2 ∪E3 . . ..
For a finite countable sample space of n outcomes, S is the union of the finite
number of simple events: S = E1 ∪ E2 ∪ E3 . . . ∪ En.

Elements of Probability Theory

Again, we list here only the fundamental definitions and properties required for the
applications to problems involving probability in the textbook.

Probability– a numerical measure, denoted P (A), of the likelihood that a specific
event A will occur.

Conditional Probability – it is understood in writing P (A) that the sample space,
that is, the certain event S, is known or given, and it occurs , that is, it is assumed
that at least one true statement S is know about the experiment under consider-
ation. To convey this specific information, we might instead write the probability
of A given that S has occurred, or given that statement S is true, as P (A|S), and
call this the conditional probability of event A, given S. This more informative
way of stating probabilities based on the sample space does not , however, appear
in either your textbook [2] or in few, if any, other mainstream textbooks.

On the other hand, if information in addition to that given by the sample space
S is obtained, then the probabilities of all events must change to reflect the new
information. For example, if it is known that a particular event B of the sample
space has in fact occurred, or equivalently that a particular statement B about
the experiment is certainly true, then since S is certain to occur it follows that
B and S occur, that is, the event B ∩ S = (B andS) occurs. We must then
calculate the probability of every event under the condition that B∩S has occurred,
which effectively makes the event B∩S the new sample space to use in calculating
probabilities. But, since B is a subset of S, it is in fact true that B ∩ S = B, the
outcomes of B∩S are simply those of B. Thus, if it is known that B has occurred,
the probability of any other event A is written as P (A|B), since P (A|B ∩ S) =
P (A|B). This is is read ”the conditional probability of event A, given that event
B has occurred”.

Basic Rules for any Measure of Probability – A proposed measure of probability
must always satisfy the following rules:

1. The probability of any event A is never negative: P (A) ≥ 0 for any event A.

2. The probability of the certain event S is 1: P (S) = 1. Since all outcomes
contained in the sample space S have some degree of uncertainty, the only
certain event of an experiment is the entire sample space S.
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3. For any event A, with complement A, we must have

P (A) + P (A) = 1 .

4. The probability P (A∩B) that both A and B occur, called the joint probability
of A and B and also written as P (A and B), is equal to the product of the
conditional probability of A given B, and the probability of B:

P (A ∩B) = P (A|B)P (B) , or P (A and B) = P (A|B)P (B) . (1)

Important Results of the Probability Rules – For any probability measure satis-
fying the above rules, it can be shown that:

• The probability of the impossible event (represented by the empty set ∅) is
zero:

P (∅) = 0 . (2)

• The probability P (A ∪ B) = P (A or B) that either A or B, or both events
occur, is given by

P (A or B) = P (A) + P (B)− P (A and B) . (3)

• For a finite, countable sample space of n outcomes, it follows from Rule 2 and
the two previous results that, since S = E1 ∪E2 ∪E3 . . .∪En, and the Ei are
mutually exclusive (Ei ∩Ej = ∅ for any i and j), the sum of the probabilities
of the simple events E1, E2, E3 , . . . En is always 1:

P (S) = P (E1) + P (E2) + P (E3) + . . .+ P (En) =
n∑
i=1

P (Ei) = 1 . (4)

Assignment of Probabilities to Events – the crucial step in proceeding with the
calculation of probabilities is choosing a method for assigning a probability to an
event. The three common methods are:

1. Classical, or Theoretical: All simple events are assumed to be equally
probably, so this could be called a theory of equiprobable events. This as-
sumption, together with equation (4), allows us to determine the probability
of a simple event for any countable sample space. For example, in flipping
a coin, we nearly always assume that the probability of obtaining a head is
the same as that of obtaining a tail: P (H) = P (T ), where now H and T
are shorthand for the simple events {H} and {T}. In this case, according to
equation (4), P (H) + P (T ) = P (H) + P (H) = P (T ) + P (T ) = 1, it follows
that P (H) = P (T ) = 1/2. If there are n simple events in the sample space,

the classical probability of a simple event is just
1

n
.
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2. Relative Frequency, or Empirical: The relative frequency approach as-
signs probabilities empirically based on actual data, the relative frequency of
an outcome in a series of identical random experiments is taken to be the
probability of the outcome. It is more widely applicable than the Classical
approach, since it doesn’t require the sample space to consist of equally likely
simple events.

3. Subjective: In my opinion, the textbook [2] and nearly all other mainstream
textbooks on probability and statistics do not do this concept justice. If you
are interested in understanding it you should read the work of masters of the
approach, like Cox [3], Jaynes [4, 5], and Jeffreys [6] (but especially any of
the work of E. T. Jaynes). It is prominent in the literature under the heading
Bayesian Statistics.

4. When is a Relative Frequency Probability Exact?

If, say, 450 of all 500 customers of a business purchased one or more of a
particular item, then the relative frequency 450/500 = 0.9 is the theoretical
or exact probability that a randomly selected customer purchased an item.
This is because this is an exact proportion of a population.

On the other hand, if a survey was done of all customers, and 450 of 500
surveyed customers purchased an item, then 450/500 = 0.9 would be an esti-
mate or approximate probability based on an approximate proportion from a
sample of customers, rather than all customers (we would not know the exact
proportion, since there may be more customers than were surveyed).

Two-Way Classification Tables

In two-way classification tables, there are always two pairs of mutually exclusive events ,
say M and F , and Y and N . In each pair, either one or the other occurs, but never both.
However, each event from one pair can occur simultaneously with either event of the other
pair. For example, both M and Y can occur, and we let n(M andY ) = n(Y andM) be
the number of occurrences of both event M and event Y , that is, their joint number of
occurrences. Of course, since M and F , and Y and N , are mutually exclusive, the number
of joint occurrences of either of these pairs is always zero: n(M andF ) = n(F andM) =
0, and n(Y andN) = n(N andY ) = 0. In the tables below, we abbreviate, for example
n(M andY ) = n(Y andM) as simply n(MY ) = n(YM), and so on. So, a two-way
classification table is really just a tabulation of the number of occurrences of four possible
joint events from two pairs of mutually exclusive events. It will typically be given to you
in the generic form

M F
Y n(MY ) n(FY )
N n(MN) n(FN)
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You will want to first fill in the totals of the rows and columns, as shown in the completed
Table 1, below:

Table 1: Generic Two-Way Classification Table

Event M F Totals

Y n(MY ) n(FY ) n(MY ) + n(FY ) = n(Y )
N n(MN) n(FN) n(MN) + n(FN) = n(N)

Totals n(MY ) + n(MN) n(FY ) + n(FN) n(MY ) + n(FY ) + n(MN) + n(FN)
= n(M) = n(F ) = n(M) + n(F ) = n(Y ) + n(N)

From the table, we see that in the row and column totals, the number of occurrences of
events M , F , Y , and N are given by the sums

n(M) = n(MY ) + n(MN), (5)

n(F ) = n(FY ) + n(FN), (6)

n(Y ) = n(MY ) + n(FY ), (7)

n(N) = n(MN) + n(FN), (8)

and the total number N of occurrences of all four events can be calculated in any one of
three ways:

N = n(MY ) + n(FY ) + n(MN) + n(FN) (9)

= n(M) + n(F ) (10)

= n(Y ) + n(N). (11)

The probabilities of unconditional events are based on this total number of occurrences,
and calculated as classical probabilities. For example,

P (M) =
n(M)

N
, P (Y ) =

n(Y )

N

are the probabilities of events M and Y , and

P (MY ) =
n(MY )

N
, P (FN) =

n(FN)

N

are the joint probabilities of (M andY ), and (F andN), respectively. Notice that the
numbers given in the original two-way classification are used to calculate joint probabil-
ities.

If you are asked to calculate a conditional probability, like P (M |Y ), we use the
formula P (M |Y ) = P (M andY )/P (Y ) =.

P (M |Y ) =

n(MY )

N
n(Y )

N

=
n(MY )

n(Y )
.
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Chapter 5: Discrete Random Variables and Their

Probability Distributions

A discrete random variable is a real-valued function defined on the events of a sample
space that can take on only a finite number, or countably infinite number, of possible
values x. See Chapter 4 of the textbook for definitions of the sample space of outcomes
and events. For calculator applications, we will be concerned only with a finite number of
values of x. Each value is assigned a probability P (x), and the set of all such probabilities
defines the probability distribution of x. These probabilities may either be given, or
calculated as relative frequencies defined by the population size and given frequencies
of x. In a typical problem, the x values will be listed in a column (or row), and the
corresponding probabilities P (x) in a second column (or row).

The mean µ (this is a letter of the Greek alphabet, pronounced ”mu”) of a random
variable x is defined by

µ =
∑
x

xP (x), (12)

and its standard deviation σ (the Greek letter pronounced ”sigma”) is defined by

σ =

√√√√[∑
x

x2 P (x)

]
− µ2 . (13)

Similarly to Chapter 3, these parameters can be calculated using either the TI-83 or
TI-84 by creating a list L1 containing the values of x, and a list L2 containing the
associated probabilities (or relative frequencies) P (x). Then press the [STAT] key, scroll
to the [CALC] tab, select 1-Var Stats and press [ENTER]. On the TI-84, input list L1
for List and list L2 for FreqList or, on the TI-83, input the comma-separated lists L1,
L2. Press [ENTER], and the mean µ of the random variable will be the number output
as x, while the standard deviation will be the number output as σx. Note that there is
no output for the sample standard deviation Sx, as the probabilities are associated with
the random variable of a population probability distribution.

We discuss in what follows only the important discrete probability distribution known
as the binomial distribution. It applies to an experiment involving n identical and inde-
pendent trials, with only two outcomes possible at each trial. The probabilities of the
two outcomes are p and q = 1 − p. The probability p must be given, and is associated
with some desired outcome of the two possible outcomes. The binomial probability dis-
tribution function gives the probability P (x) of obtaining x desired outcomes out of n
trials:

P (x) = nCx p
x qn−x, where q = 1− p. (14)

Table I of Appendix C tabulates these probabilities for selected values of n, x, and p.

1. To compute such a probability using the TI-84 calculator, press [2ND], then [VARS]
(where the DISTR menu appears). Scroll down the DISTR menu to binompdf and
press [ENTER]. In the window that appears, input the number n for trials, the
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desired-outcome probability p for p, and the number of desired outcomes x for x

value, then scroll down to highlight paste, and press [ENTER]. This will bring
you to the homescreen with everything filled in to binompdf . Press [ENTER]
again to output the probability defined by equation (14).

2. For the TI-83, after selecting binompdf from DISTR and pressing [ENTER], bi-
nompdf will appear on your homescreen and you will have to input the comma–
separated list containing n, p and x, then press [ENTER] to output the probability
defined by (14). It will appear on the homescreen as simply binompdf( n, p, x ),
standing for

P (x) = binompdf( n, p, x ).

3. The mean µ, and standard deviation σ, of a binomial distribution only are given
by the simple formulas:

µ = np, and σ =
√
npq , where q = 1 − p.

These are easily calculated on the homescreen using the multiplication operator,
together with the square root function (which you get by the keystrokes [2ND],
then [x2] . . . notice the

√
symbol above this key). So to calculate σ when, for

example, n = 100 and p = 0.3, press [2ND], then [x2], then complete the home-
screen output with

√
(100 ∗ 0.3 ∗ (1− 0.3)), and press [ENTER]. Be careful about

inserting parentheses, there should always be the same number of right parentheses
as left parentheses!

4. Some of the textbook and computer exercises for the binomial distribution involve
answering questions such as “what is the probability that at most x of the n
outcomes occur?”, or “what is the probability that at least x of the n outcomes
occur?”, or “what is the probability that x to y of the n outcomes occur?”. These
calculations involve the cumulative binomial distribution function, a summation
over some range of the probabilities P (x). The three types of questions are stated
as cumulative probabilities as follows (where X is used for the summation variable):

P (at most x) = P (X ≤ x) =
x∑

X=0

P (X),

P (at least x) = P (X ≥ x) =
n∑

X=x

P (X) = 1 − P (X ≤ x− 1) = 1 −
x−1∑
X=0

P (X),

P (x to y) = P (x ≤ X ≤ y) =

y∑
X=x

P (X) = P (X ≤ y) − P (X ≤ x− 1).

Both the TI-83 and TI-84 include the application binomcdf (notice the “c” in the
name, standing for “cumulative”) that will compute P (at most x) = P (X ≤ x),
which can thus be used to answer any of the above three questions. To find the
application, press [2ND], then [VARS]. Scroll down the DISTR menu to binomcdf



18

and press [ENTER]. On the TI-84 input n for trials, p for p, and either x, y, or
(x − 1) for x value, depending on which of the three problems you are trying to
solve. For the TI-83, you must input a comma–separated list n, p, x, [ or (x − 1),
or y, depending on the question ] as shown below:

P (at most x) = binomcdf(n, p, x),

P (at least x) = 1 − binomcdf(n, p, x− 1),

P (x to y) = binomcdf(n, p, y) − binomcdf(n, p, x− 1).

Notice that in the last two formulas, you must input (x− 1) as the third argument
to binomcdf .

The right-hand sides of each of these formulas must be entered in a single line entry
on the homescreen. For example, in the third formula, you will obtain an incorrect
result if you select binomcdf(n, p, y) and press [ENTER], then on the next line
use the subtraction key [−] and select binomcdf(n, p, x− 1) . . . in which case the
result will appear on the homescreen as ANS − binomcdf(n, p, x− 1) . . . and then
press [ENTER]. The result of this order of operations is just the output from the
last command, which was binomcdf(n, p, x− 1), definitely not the desired result.
Instead, select binomcdf(n, p, y), press [−], select binomcdf(n, p, x−1), and only
then press the [ENTER] key.

As an example of the use of the cumulative binomial distribution function, we solve
Problem 5.51 of the textbook (using technology rather than Table I of Appendix C):

5.51 According to a Wakefield Research survey of adult women, 50% of the women said
that they had tried five or more diets in their lifetime (USA TODAY , June 21, 2011).
Suppose that this result is true for the current population of adult women. A random
sample of 13 adult women is selected. Use the binomial probabilities table (Table I of
Appendix C) or technology to find the probability that the number of women in this
sample of 13 who had tried five or more diets in their lifetime is

a. at most 7 b. 5 to 8 c. at least 7

Solution. Here, we have a sample of size n = 13 adult women, and the probability that
one of them has tried five or more diets is p = 50% = 0.5. Thus

a. P(at most 7) = binomcdf(13, 0.5, 7) = 0.7095

b. P(5 to 8) = binomcdf(13, 0.5, 8) − binomcdf(13, 0.5, 4) = 0.7332

c. P(at least 7) = 1−binomcdf(13, 0.5, 6) = 0.5000
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Chapter 6: Continuous Random Variables and the

Normal Distribution

We consider here only the normal distribution for a continuous random variable x. A
normally distributed random variable is referred to simply as a normal random variable.
Its probabilities are determined by the normal probability density function, (or normal
pdf, the familiar bell-shaped curve shown below), and the normal cumulative distribution
function (or normal cdf, defining the area under the bell-shaped curve between any two
points on the x-axis). The normal pdf is completely characterized by two parameters ,
its mean µ and its standard deviation σ, and is given in terms of them by the following
exponential formula:

f(x) =
1

σ
√

2π
e−

1
2( x−µ

σ )
2

. (15)

The normal pdf for a random variable x with mean µ = 30 and standard deviation σ = 5
is illustrated in Figure 1. Note that the peak of a normal pdf always occurs at the mean
value µ which, in Figure 1, is at x = 30.

10 15 20 25 30 35 40 45 50 55

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

x

f(x)

Figure 1: Normal pdf with µ = 30, σ = 5

The probability that a normal random variable x lies in some interval between two
values of x, say x1 and x2, with x1 < x2, is equal to the area under the bell curve
between x1 and x2. In the above example, the probability that x lies between 23 and 35
is the shaded area under the bell curve between these two values of x. The probability is
calculated using the normal cumulative distribution function (abbreviated as normal cdf)
and the two given points. For two arbitrary points x1 and x2, this probability is written
as P (x1 ≤ x ≤ x2), so the shaded area in the example is equal to P (23 ≤ x ≤ 35).

1. On the TI-84 press [2ND], then [VARS], and under the DISTR menu choose nor-
malcdf . You must input the lower bound x1 of the interval, the upper bound x2
of the interval, the mean µ of the normal distribution, and the standard deviation
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σ of the normal distribution. It should output a positive decimal number less than
or equal to 1, which is the probability P (x1 ≤ x ≤ x2) that x is in the interval
[x1, x2 ].

2. On the TI-83, after selecting normalcdf the function normalcdf will appear on
the homescreen, where you must then input a comma–separated list consisting of
the lower bound, the upper bound, the mean, and the standard deviation, that is,
normalcdf(x1, x2, µ, σ ). Press [ENTER] to output the probability.

The textbook focuses on the use of the standard normal distribution and its table of
values in Table IV, Appendix C, page C19. A value in this Table represents, always, the
area under the standard normal pdf to the left of a given value of z, defined as follows:
an arbitrary normal random variable x with mean µ and standard deviation σ can be
transformed to a standard normal random variable z defined by

z =
x− µ
σ

. (16)

The probability density function of this standard normal random variable has special
values of the mean and standard deviation, namely, µs = 0 and σs = 1 (the textbook does
not use this s-subscript notation, but it seems appropriate to distinguish these special
values associated with the standard normal pdf from those of an arbitrary normal pdf).
Thus, the formula for the standard normal pdf is given by (15) after setting µ = 0 and
σ = 1:

fs(z) =
1√
2π

e−
z2

2 . (17)

To use Table IV, the x-boundaries x1 and x2 must be transformed to z-boundaries, which
are given by

z1 =
x1 − µ
σ

, z2 =
x2 − µ
σ

. (18)

In the example with µ = 30, σ = 5, and the interval endpoints x1 = 23, x2 = 35, the
corresponding z-values are

z1 =
23− 30

5
= −1.4, z2 =

35− 30

5
= 1.0 .

A graph of the standard normal distribution for these parameters is illustrated in Figure 3
on the next page. A standard normal variable may, of course, also be used in calculator
computations by substituting µ = 0 and σ = 1 in the normalcdf program, and the
computed z-values. In our example, above, where µ = 30 and σ = 5, you will find that

P (23 ≤ x ≤ 35) = normalcdf(35, 42, 30, 5) = 0.7606,

rounded to four decimal places, while using the standard normal pdf parameters:

P (−1.4 ≤ z ≤ 1) = normalcdf(−1.4, 1, 0, 1) = 0.7606,

giving the same value. In general, it is always true that P (x1 ≤ x ≤ x2) = P (z1 ≤ z ≤
z2), when the z-values are computed using (18).
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Figure 2: Standard Normal pdf.

You may also be asked to calculate P (x ≤ x2), the probability that x ≤ x2 for some
value of x2. This is equivalent to asking for P (−∞ < x ≤ x2), so the lower boundary
x1 is essentially ”negative infinity” in this case. On the other hand, if you are asked to
calculate P (x ≥ x1), then this is equivalent to asking for P (x1 ≤ x < ∞), so the upper
boundary x2 is essentially ”positive infinity”.

Infinity must be approximated on a calculator by some large finite number. It is
probably safest to use 1099, which you can input with the keystrokes [2ND], then [,]
(the comma key to the right of the [x2] key), then 99 (it will appear as 1E99 on your
homescreen). So, for x ≤ x2, use normalcdf(−1E99, x2, µ, σ ) (don’t forget the negative
sign on 1E99, using the [(-)] key at the bottom right corner of the number keyboard, not
the subtraction key [−]), and for x ≥ x1, use normalcdf(x1, 1E99, µ, σ ).

To find, for example, the probability that x ≤ x2 where x2 = 80 and assuming that
µ = 100, σ = 40, first notice that the lower boundary is −∞. We can then calculate
either

P (x ≤ 80) = normalcdf(−1E99, 80, 100, 40),

or instead compute z2 = (80− 100)/40 = −0.5, and calculate

P (z ≤ −0.5) = normalcdf(−1E99,−0.5, 0, 1).

Both methods determine the same probability, that is, P (x ≤ 80) = P (z ≤ −0.5) =
0.3085 to four decimal places.

Another type of problem from this chapter asks you to find the value c of a normal
random variable x corresponding to a given probability P (x ≤ c). This probability is
just the area, say AL, under the normal curve to the left of c.

To calculate the required value c of x on either the TI-84 or TI-83, press [2ND], then
[VARS], and under the DISTR menu select invNorm.

1. For the TI-84, input the given probability (or area) AL, the mean µ, and the
standard deviation σ.
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2. On the TI-83, invNorm appears on the homescreen, and you must input the
comma–separated list AL, µ, σ, which outputs

c = invNorm(AL, µ, σ), where AL = P (x ≤ c). (19)

If you are instead asked for the value c of x corresponding to a given probability P (x ≥ c),
then this probability is the area to the right of c, say, AR. Since the invNorm program
requires as input an area to the left of c, you must now input 1−AR for the area in the
invNorm program, that is,

c = invNorm( (1− AR), µ, σ), where AR = P (x ≥ c). (20)

This follows from the fact that the total area under the normal curve is always 1, so
AL + AR = 1, hence AL = 1− AR.
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Chapter 7: Sampling Distributions

The problems of this chapter involve sampling from a population that has a probability
distribution for which either the mean µ and standard deviation σ are known, or the
proportion p of some characteristic of the population is known.

• For each sample from a population having known µ and σ, we can calculate the
mean x of that sample. This sample mean is a random variable, and the probability
distribution of the sample means is referred to as the sampling distribution of x.
The mean of the sampling distribution is denoted by µx, and the standard deviation
of the sampling distribution is denoted by σx (see Section 7.2 of [1]). The standard
deviation σx of x is also called the standard error of x. They are given in terms
of the mean µ and standard deviation σ of the population from which they were
sampled by

µx = µ , and σx =
σ√
n
, if

n

N
≤ .05 , (21)

where n is the sample size, and N is the population size (there is a more complicated
formula for σx if n/N > .05, but there are very few problems in the textbook that
require it; see page 327 for details). Notice that if both the population standard
deviation σ and sample standard deviation σx are given, then one can calculate
the required sample size n by

n =

(
σ

σx

)2

, (22)

which is the answer to a popular question on quizzes and exercises.

If the population has a normal distribution with mean µ and standard deviation σ,
then the sampling distribution is also normal, but with mean µx = µ and standard
deviation σx = σ/

√
n.

If the population distribution has a known mean µ and standard deviation σ, but
is not normally distributed, then the central limit theorem implies that for sample
sizes n ≥ 30, the sampling distribution will again be (approximately) normally
distributed with mean µx = µ and standard deviation σx = σ/

√
n.

In summary, as long as n/N ≤ .05 and the population is either normally distributed
or, if not normally distributed, the sample size n ≥ 30, we can assume that the
sampling distribution is normal with mean µx = µ and standard deviation σx =
σ/
√
n. For a given sample we can then use, as in Chapter 6, the normalcdf

function on the calculator to find the probability that the sample mean x lies
between two given values, say x1 and x2, that is,

P (x1 ≤ x ≤ x2) = normalcdf

(
x1, x2, µ,

σ√
n

)
.

It is extremely important that the fourth argument be σ/
√
n, not simply σ, since

we are considering a sampling distribution (that happens to be normal).
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Again, the textbook focuses on using the standard normal distribution Table IV to
calculate the probabilities. The sample mean x is transformed to a new standard
normal random variable z defined by

z =
x− µx
σx

=

√
n (x− µ)

σ
, (23)

where the second equality follows by substituting for σx = σ/
√
n. This z is normally

distributed with mean µs = 0 and standard deviation σs = 1. The x-interval [x1, x2]
transforms to a z-interval [zx1 , zx2 ], where

zx1 =

√
n (x1 − µ)

σ
, zx2 =

√
n (x2 − µ)

σ
.

These values are then used with Table IV to calculate the probability P (x1 ≤
x ≤ x2) = P (zx1 ≤ z ≤ zx2). This probability can also be calculated in terms
of the parameters of the standard normal distribution using the same normalcdf
program on the calculator:

P (x1 ≤ x ≤ x2) = P (zx1 ≤ z ≤ zx2) = normalcdf(zx1 , zx2 , 0, 1).

• The other type of problem discussed in this chapter is that of a population for which
a proportion p share a common characteristic. If X is the number of elements of
the population having this characteristic, and N is the population size, then the
population proportion p with this characteristic is just the ratio (or fraction, or
relative frequency) defined by

p =
X

N
. (24)

If a sample of size n is taken from the population, and x elements in the sample have
this characteristic, then the sample proportion with this characteristic is defined
and denoted by

p̂ =
x

n
, where p̂ is pronounced ”p-hat”’. (25)

The sample proportion is a random variable, and its probability distribution is
called the sampling distribution of p̂. The mean µp̂ of the sampling distribution of
p̂ is always equal to the population proportion p:

µp̂ = p.

The standard deviation σp̂ of the sampling distribution of p̂ is given by the formula

σp̂ =

√
p q

n
, when

n

N
≤ .05 ,

where q = 1−p. See page 345 of the textbook for the calculation when n/N ≥ .05.
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In a given problem, you may be given p and p̂ directly, or you may be given the
numbers X and x having a common characteristic, from which you can calculate
the proportions: p = X/N and p̂ = x/n (assuming the population and sample
sizes have been given). Sometimes, percentages p% and p̂% having the common
characteristic are given, and these should always be converted to decimal fractions ,
that is, proportions , by dividing them by 100: p = p%/100, and p̂ = p̂%/100.

If the following two conditions are satisfied:

np > 5, and nq > 5, where q = 1 − p,

then the central limit theorem implies that the sampling distribution of p̂ is approx-
imately normal . If these two conditions are met, we can compute the probability
that the sample proportion lies between two values p̂1 and p̂2 again using the nor-
malcdf program on the calculator:

P (p̂1 ≤ p̂ ≤ p̂2) = normalcdf

(
p̂1, p̂2, p,

√
pq

n

)
.

Be aware that the interval in question may be unbounded in either direction, so
that you may be required to use p̂1 = −1E99, or p̂2 = 1E99. If desired, the
standard normal distribution Table IV may be used after transforming p̂ to a
standard normal random variable z defined by

z =
p̂− µp̂
σp̂

=
( p̂− p )√

p q

n

.
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Chapter 8: Estimation of the Mean and Proportion

We are considering in this chapter either a population random variable x, or a population
proportion p. The random variable x has a population distribution whose population
mean µ, however, is now an unknown value, and the proportion p of the population
distribution of the proportion is also unknown. We are given a single sample set of data
from one of these populations, and are interested in estimating (or approximating) the
unknown values µ and p using this sample.

From the sample we can calculate the sample mean x, or sample proportion p̂. The
sampling distribution for x will have some mean µx, and the sampling distribution for p̂
will have some mean µp̂. If we knew the population mean µ and population proportion
p, we could conclude as in Chapter 7 that µx = µ and µp̂ = p. However, we do not know
µ or p, so in this chapter we try to estimate values for them.

The simplest type of estimate we can make is called a point estimate. These are
simply

µ = x, and p = p̂, the point estimates of µ and p.

A more conservative approach is to define a confidence interval that contains , with
some specified reliability, either the population mean, or the population proportion.
The reliability associated with the confidence interval is stated as a percent called the
confidence level , denoted by (1−α) 100 %. In this definition, (1−α) (a decimal less than
1) is called the confidence coefficient , and α is called the significance level . The textbook
does not set aside a special symbol for the confidence coefficient, but it is convenient to
do so, and we will refer to it as simply C, that is, C = 1− α.

Though not explicitly mentioned in the textbook, α is always selected to be some
small, positive, decimal value less than 0.5, that is, we always choose 0 < α < .5.
The most common examples of confidence levels are 90 %, 95 %, 96 %, 97 %, 98 % , 99 %,
and sometimes 99.5 %, corresponding to confidence coefficients of C = (1 − α) = .900,
.950, .960, .970, .980, .990, and .995, the result of choosing significance levels of α =
.100, .050, .040, .030, .020, .010, and .005, respectively.

We focus first on estimating µ, using the sample mean x. To do so, we require first
that either the population is normally distributed, or the sample size n is at least 30:
n ≥ 30. In these two cases, the sampling distribution is normal or approximately so,
with mean µx = µ. There are then two possibilities to consider: either the population
standard deviation σ is known, or it is unknown (the population mean µ is of course
unknown, as it is what we are trying to estimate).

1. σ known (z-values) If σ is known, then for any significance level α < .5 we can
find a positive value of z (for which we use the special symbol zα/2), defined such
that the area under the standard normal curve between −zα/2 and zα/2 is 1−α = C,
the confidence coefficient.

The value zα/2 can be computed with either calculator using the invNorm function
described in Chapter 6, and will correspond to one of the entries under the z Value
column of Table 8.1, page 366, of the textbook. In this case, the area to the left of
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the positive value zα/2 is 1− 1− C
2

=
1 + C

2
, so zα/2 can be calculated as

zα/2 = invNorm

((
1 + C

2

)
, 0, 1

)
.

When the standard deviation σ of a population is known, from which we then take
a sample of size n and compute the sample mean x , a (1 − α) 100 % confidence
interval is defined by [

x −
zα/2 σ√

n
, x +

zα/2 σ√
n

]
(26)

This confidence interval can be calculated using either the TI-83 or TI-84 by

1. pressing [STAT],

2. scrolling over to TESTS,

3. selecting ZInterval, and pressing [ENTER].

Then, under ZInterval, at Inpt, scroll right and highlight Stats by pressing [EN-
TER] again.

Input the known population standard deviation σ, the sample mean x, the sample
size n, and the (decimal valued) confidence coefficient (1− α) (not the confidence
level, which is a percent). At the bottom, highlight Calculate, then press [EN-
TER].

The top line of the output will contain the confidence interval in the form (xL, xU),
where the numbers xL and xU are the lower and upper endpoints, respectively, of
the confidence interval. You will also see the values for x and n that you entered
as Stats.

The term being added and subtracted from x in the confidence interval (26) is
called the margin of error , denoted by E:

E =
zα/2 σ√

n
. (27)

In order for the margin of error to have a specified value for a given α and σ, the
sample size n must be chosen to be the nearest integer greater than

n =
(zα/2 σ

E

)2
, (28)

obtained by solving algebraically the previous equation for n.

2. σ unknown (t-values) If the standard deviation σ of the normal population dis-
tribution is unknown, then we begin by either being given, or calculating using
the methods of Chapter 3, the sample standard deviation s (which is denoted by
Sx in the output of the program 1-Var Stats used in Chapter 3). Then x is a
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known random variable (with unknown mean µx = µ, but known sample standard
deviation sx = s/

√
n ). Notice that sx is NOT the same as the input variable Sx

to your calculator program, which is s itself. A new random variable t defined by

t =

√
n (x− µ)

s
,

is used to determine the confidence interval in this case. However, t is not a stan-
dard normal random variable, but rather is determined by Student’s t distribution
(typically abbreviated to just t distribution). This distribution is also symmetric

about a mean µt = 0, but its standard deviation is given by σt =

√
df

df − 2
where

df = n − 1 is called the number of degrees of freedom, and n is again the sample
size.

When σ is unknown, the (1−α) 100 % confidence interval for the population mean
µ is given by [

x −
tα/2 s√
n
, x +

tα/2 s√
n

]
.

This confidence interval is calculated using either the TI-83 or TI-84 by

1. pressing [STAT],

2. scrolling over to TESTS,

3. selecting TInterval, and pressing [ENTER].

Then, under TInterval, at Inpt, scroll over and highlight Stats by pressing [EN-
TER] again.

Input the given, or calculated, sample standard deviation s for Sx, the sample
mean x, the sample size n, and the (decimal valued) confidence coefficient C for
the C-Level. At the bottom, highlight Calculate, then press [ENTER].

The top line of the output will contain the confidence interval in the form (tL, tU),
where the numbers tL and tU are the lower and upper endpoints, respectively, of
the confidence interval. You will also see the values for x, s, and n that you entered
as Stats.

But how do we find tα/2, which defines the confidence interval? For a given signif-
icance level α, the positive value tα/2 of t is given by

P (t > tα/2) = α/2.

On the TI-84, the value tα/2 can be calculated using the invT program obtained
by pressing [2ND], then [VARS], and selecting it from the DISTR menu. Since the

area to the left of tα/2 is
1 + C

2
, input

1 + C
2

where invT asks for area, and then

the number of degrees of freedom, df (which may have to be calculated from the
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sample size using df = n − 1, when the sample size n is given in the problem).
When you press [ENTER], the output is the desired value tα/2, that is,

tα/2 = invT

((
1 + C

2

)
, df

)
.

Unfortunately, invT is not included as an application on the TI-83 calculator!
However, based on the instructions given at

http://www.ehow.com/how_7483505_download-invt-function-ti-

calculator.html

an inverse t distribution program (named INVTW) was written for the TI-83,
which can be downloaded from

http://mikewilkes-irsc.weebly.com/probability-and-statistics.html

After downloading to your computer, you must send it to your TI-83. Links to
directions for making this transfer are given at the above website.

The margin of error for a t confidence interval is

E =
tα/2 s√
n
.

For a specified margin of error E, with given s and α, one might think that the
required sample size would be

n =

(
tα/2 s

E

)2

.

However, in order to compute the t-value tα/2, one must know the number of
degrees of freedom, which in turn requires the sample size n. Since n is unknown,
this formula cannot be used. We instead use equation (28) with the population
standard deviation σ replaced by the sample standard deviation s, that is,

n =
(zα/2 s

E

)2
. (29)

3. Proportion Intervals Finally, we consider a confidence interval estimate for an un-
known population proportion p using a known sample proportion p̂. As in Chapter
7, the mean µp̂ of the sampling distribution of p̂ is equal to the population propor-
tion p:

µp̂ = p,

and the standard deviation σp̂ of the sampling distribution is given by

σp̂ =

√
p q

n
, when

n

N
≤ .05 ,

http://www.ehow.com/how_7483505_download-invt-function-ti-calculator.html
http://www.ehow.com/how_7483505_download-invt-function-ti-calculator.html
http://mikewilkes-irsc.weebly.com/probability-and-statistics.html
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where q = 1 − p. However, since the population proportion p is in this case
unknown, we must estimate it by the sample proportion p̂ in the calculation of the
mean and standard deviation µp̂ and σp̂, obtaining for the sampling distribution
statistics:

µp̂ = p̂, and σp̂ =

√
p̂ q̂

n
, when

n

N
≤ .05 , (30)

where q̂ = 1 − p̂. The sampling distribution can be considered to be normal as
long as the following two conditions are met:

np̂ > 5, and nq̂ > 5.

As in the previous development of a confidence interval for µ, we can find the
positive value zα/2 of the standard normal random variable defined such that

P (z > zα/2) = α/2 =
1 + C

2
,

using the invNorm program on the calculator:

zα/2 = invNorm

((
1 + C

2

)
, 0, 1

)
.

The (1− α) 100 % confidence interval for the population proportion p is given by[
p̂ − zα/2

√
p̂ q̂

n
, p̂ + zα/2

√
p̂ q̂

n

]
. (31)

This confidence interval is calculated using either the TI-83 or TI-84 by

1. pressing [STAT],

2. scrolling over to TESTS,

3. selecting 1-PropZInt, and pressing [ENTER].

Under 1-PropZInt, the value entered for x should be n ∗ p̂, rounded to the near-
est integer (rounding to obtain an integer is important; if you forget to do this,
the calculator will remind you with an ERR:DOMAIN error response). Enter the
sample size for n, and the confidence level C for C-Level. At the bottom, highlight
Calculate, then press [ENTER]. The top line of the output will contain the con-
fidence interval in the form (p̂L, p̂U), where the numbers p̂L and p̂U are the lower
and upper endpoint sample proportions (decimal values less than or equal to 1),
respectively, of the confidence interval. You will also see the values for p̂ and n
that you used in calculating x for your input.

The margin of error for a p confidence interval is

E = zα/2

√
p̂ q̂

n
.
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For a specified margin of error E and confidence level (from which zα/2 can be
determined) this can be solved for the sample size:

n =
p̂ q̂ (zα/2)

2

E2
.
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Chapter 9: Hypothesis Tests About the Mean and

Proportion

This chapter involves hypothesis testing of a null hypothesis H0 about either

1. a population mean µ under one of two conditions: (a) the population variance σ is
known, or (b) the population variance σ is unknown, or

2. a population proportion p, where we have large samples satisfying the inequalities
np > 5, and nq > 5, where q = 1− p, and n is the sample size.

For hypothesis tests of a population mean µ, the possible null hypotheses are either
(i) H0 : µ = µ0, (ii) H0 : µ ≤ µ0, or (iii) H0 : µ ≥ µ0. For a population proportion the
possible null hypotheses are (i) H0 : p = p0, (ii) H0 : p ≤ p0, or (iii) H0 : p ≥ p0. Notice
that null hypotheses always have an equality sign included as part of the hypothesis (and
often include only an equality sign).

In the case of a population mean, there are three possible alternative hypotheses ,
either (i) H1 : µ 6= µ0 (equivalent to either µ < µ0 or µ > µ0), (ii) H1 : µ > µ0, or
(iii) H1 : µ < µ0. For a population proportion the possible alternative hypotheses would
be (i) H1 : p 6= p0 (equivalent to either p < p0 or p > p0), (ii) H1 : p > p0, or (iii)
H1 : p < p0. Alternative hypotheses never include an equality sign.

A null hypothesis is rejected whenever its corresponding alternative hypothesis is
true. If the alternative hypothesis is H1 : µ 6= µ0 or H1 : p 6= p0, the rejection region will
be two-tailed . If instead the alternative hypothesis is either H1 : µ > µ0 or H1 : p > p0,
the rejection region is one-tailed and lies to the right of the non-rejection region ( in
short, it is right-tailed ), while if H1 : µ < µ0 or H1 : p < p0, the rejection region is again
one-tailed but lies to the left of the non-rejection region ( in short, it is left-tailed ).

The rejection regions in each case are determined by the value of the significance
level α, introduced earlier in Chapter 8. This significance level α is the probability of
rejecting H0, when it is in fact true:

α = P (H0 is rejected |H0 is true).

The significance level α is also called the probability of a Type I error .

Critical Values

Certain critical values of z or t, determined by α, are associated with each of the three
types of alternative hypotheses:

1. If the rejection region is two-tailed, and σ is known, then α determines two critical
values, a positive one, zα/2, defined by

P (z > zα/2) = α/2 , (32)

and a second critical value that is the negative of this value. Since the area to
the left of the positive value zα/2 is 1 − α/2, we can calculate it using either the
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invNorm algorithm: zα/2 = invNorm( (1− α/2), 0, 1), or by table lookup. The
two values ± zα/2 are called the critical values of z for two-tailed tests of either the
population mean when σ is known, or of the population proportion when doing
proportion problems.

If the rejection region is two-tailed, but σ is unknown, then α determines a positive
value tα/2 such that

P (t > tα/2) = α/2 , (33)

which is calculated on the TI-84 using tα/2 = invT( (1− α/2), df ) (see Chapter
8 for alternatives if you are using a TI-83). It can also be found by table lookup
in Table V, pages C-21 and C-22 of the textbook (but be careful here as you must
use the actual value of α/2, rather than (1 − α/2) in the table lookup, since this
Table, unlike Table IV, gives the area to the right of a given t). The values ±tα/2
are the critical values of t for two-tailed tests of the population mean when σ is
unknown.

2. If the rejection region is right-tailed, and σ is known, then α determines a different
positive value zα using α, not α/2, such that

P (z > zα) = α . (34)

This is calculated using zα = invNorm( (1− α), 0, 1). This value zα is called the
critical value of z for right-tailed tests of either the population mean when σ is
known, or of the population proportion in a test about proportions.

If the rejection region is right-tailed, but σ is unknown, then α determines a
different positive value tα such that

P (t > tα) = α , (35)

which is again calculated on the TI-84 using tα = invT( (1− α), df ). This tα is the
critical value of t for right-tailed tests of the population mean when σ is unknown.

3. Finally, if the rejection region is left-tailed, and σ is known, then α determines a
negative value zα, such that

P (z < zα) = α . (36)

In this case α is the area to the left of zα, so we must use α in calculating zα =
invNorm(α, 0, 1). This value zα is called the critical value of z for left-tailed tests
of either the population mean when σ is known, or of the population proportion.

If the rejection region is left-tailed, but σ is unknown, then α determines a negative
value tα such that

P (t < tα) = α , (37)

which can be calculated on the TI-84 using tα = invT(α, df ). This tα is the
critical value of t for left-tailed tests of the population mean when σ is unknown.
If you use the t-Tables here, you must change the sign on the value of t obtained
from the Table (it is negative for a left-tail test).
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Observed Values, or Test Statistics

The values µ0 and p0 of µ and p, claimed in the statements of the null hypotheses , are
used to define random variables called the observed values, or test statistics, of each
test.

For the null hypothesis population mean µ0 when σ is known, the observed value is
the standard normal random variable z0 defined by

z0 =

√
n (x − µ0)

σ
. (38)

When σ is unknown, the observed value is a t-distributed random variable t0 defined
by

t0 =

√
n (x − µ0)

s
, (39)

where s is the sample standard deviation.
For the null hypothesis population proportion p0, the observed value is another stan-

dard normal random variable zp0 , defined by

zp0 =
(p̂− p0)√
p0 q0
n

, (40)

where q0 = 1− p0 under the radical sign.

p–Values

With each of the observed values defined above is associated a probability , called its
p–value, which is used in a p–value test to determine whether or not to reject the null
hypothesis. After computing the appropriate observed value from one of equations (38)–
(40), we have

1. For a two-tailed test:

• The p–value for a null hypothesis involving µ0 is defined, when σ is known,
by

pz0 = 2P (z > |z0|) = 2P (z < −|z0|) . (41)

The probabilities on the right-hand sides can be calculated using either
normalcdf(|z0|, 1E99, 0, 1), or normalcdf(−1E99,−|z0|, 0, 1). Either prob-
ability must be multiplied by 2 to obtain the p–value corresponding to the
observed value (test statistic) z0.

• When σ is unknown, the p–value is

pt0 = 2P (t > |t0|) = 2P (t < −|t0|) . (42)

This can be calculated using either tcdf(|t0|, 1E99, df), or tcdf(−1E99,−|t0|,
df). Be advised, tcdf is the t–cumulative distribution function, which we
have not used prior to this example; find it by pressing [2ND], then [VARS],
and searching under the DISTR menu.
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• For a null hypothesis involving the population proportion p0, the p–value is

pp0 = 2P (z > |zp0|) = 2P (z < −|zp0 |), (43)

which can be calculated using either normalcdf(|zp0|, 1E99, 0, 1), or normal
cdf(−1E99,−|zp0|, 0, 1).

2. For a one-tailed test:

• The p–value for a null hypothesis involving µ0 is defined, when σ is known,
by

pz0 =

{
P (z > |z0|) for a right-tailed test,

P (z < −|z0|) for a left-tailed test .
(44)

It can be calculated using either normalcdf(|z0|, 1E99, 0, 1), or normalcdf(
−1E99,−|z0|, 0, 1).

• When σ is unknown, the p–value is

pt0 =

{
P (t > |t0|) for a right-tailed test,

P (t < −|t0|) for a left-tailed test .
(45)

This can be calculated using either tcdf(|t0|, 1E99, df), or tcdf(−1E99,−|t0|,
df), using the t–cumulative distribution function.

• For a null hypothesis involving the population proportion p0, the p–value is

pp0 =

{
P (z > |zp0|) for a right-tailed test,

P (z < −|zp0|) for a left-tailed test .
(46)

which can be calculated using either normalcdf(|zp0|, 1E99, 0, 1), or normal
cdf(−1E99,−|zp0|, 0, 1).

Tests for Rejection of the Null Hypothesis

• p–value Tests

The null hypothesis is rejected, under the various alternative hypotheses, accord-
ing to the following p–value comparisons with the significance level α:

1. For tests of a population mean, if H1 is any test (either one- or two-tailed) at
significance level α, then for known σ, H0 is rejected if pz0 < α, while for
unknown σ, H0 is rejected if pt0 < α.

2. For tests of a population proportion, if H1 is any test (either one- or two-
tailed) at significance level α, then H0 is rejected if pp0 < α.
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• Critical Value Tests

The null hypothesis is also rejected, under the various alternative hypotheses,
according to the following critical value comparisons with the calculated observed
values :

Two-tailed:

1. For tests of a population mean, if H1 is a two-tailed test with critical value
zα/2 for known σ, or tα/2 for unknown σ, then H0 is rejected if |z0| > zα/2 for
known σ, or |t0| > tα/2 for unknown σ. Note that for two-tailed tests, it is
the absolute value of the observed value that is compared to the critical value
(which has positive values in each of these cases).

2. For tests of a population proportion, if H1 is a two-tailed test with critical
value zα/2, then H0 is rejected if |zp0| > zα/2.

Right-tailed:

1. For tests of a population mean, if H1 is a right-tailed test with critical value
zα for known σ, or tα for unknown σ, then H0 is rejected if z0 > zα for known
σ, or t0 > tα for unknown σ.

2. For tests of a population proportion, if H1 is a right-tailed test with critical
value zα, then H0 is rejected if zp0 > zα.

Left-tailed:

1. For tests of a population mean, if H1 is a left-tailed test with critical value zα
for known σ, or tα for unknown σ, then H0 is rejected if z0 < zα for known
σ, or t0 < tα for unknown σ.

2. For tests of a population proportion, if H1 is a left-tailed test with critical
value zα, then H0 is rejected if zp0 < zα.

Calculator Applications

The TI-83 and TI-84 will calculate p–values and observed values for the various types of
alternative hypotheses, as follows:

1. For hypotheses about a claimed population mean µ0 when σ is known, go to [STAT],
then under TESTS select Z-Test. If you know the sample mean x and sample
size n, scroll over and highlight Stats. Enter the hypothesized mean µ0, the known
σ, the sample mean x, and the sample size n. If it is a two-tailed test select µ : 6= µ0,
if left-tailed select < µ0, and if right-tailed select > µ0. Highlight Calculate and
press [ENTER]. In the output, z is the observed value z0 calculated using equation
(38), and p is the p–value (44) corresponding to it.
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2. For hypotheses about a claimed population mean µ0 when σ is unknown, go to
[STAT], then under TESTS select T-Test. If you know the sample mean x, sample
standard deviation s, and sample size n, scroll over and highlight Stats. Enter the
hypothesized mean µ0, the sample mean x, the known s, and the sample size n. If it
is a two-tailed test select µ : 6= µ0, if left-tailed select < µ0, and if right-tailed select
> µ0. Highlight Calculate and press [ENTER]. In the output, t is the observed
value t0 calculated using equation (39), and p is the p–value (45) corresponding to
it.

3. For hypotheses about a claimed population proportion p0, go to [STAT], then under
TESTS select 1-PropZTest. Enter the hypothesized proportion p0, the number
x of samples having the desired characteristic, and the sample size n. If you are
given in the problem the sample proportion p̂, rather than x directly, you must
compute x = n ∗ p̂, and input this value rounded to the nearest integer . If it is
a two-tailed test select µ :6= µ0, if left-tailed select < µ0, and if right-tailed select
> µ0. Highlight Calculate and press [ENTER]. In the output, z is the observed
value zp0 calculated using equation (40), and p is the p–value (46) corresponding
to it.

Caution!

The calculator does not perform the actual hypothesis test for you! The three calculator
applications just described involved no information about the significance level α defining
the rejection region. You, the student, must complete the hypothesis test for a given
value of α by either (i) comparing the p-value obtained from the calculator to α . . . reject
H0 if p-value < α, otherwise fail to reject, or (ii) comparing the calculated observed value
to one of the critical values defined by equations (32)–(37), each of which is determined
by either α/2 (two-tailed tests), or α (one-tailed tests) . . . reject H0 if the observed value
lies in a rejection region defined by either α/2, or α, respectively, fail to reject otherwise.
These tests were discussed earlier under the headings p–value Tests and Critical Value
Tests.

A Type of Problem Requiring the Use of t−Tables

There is a type of problem, illustrated by Exercise 9.62, page 432 of [1], that asks a
question that cannot be answered by using a graphing calculator. For completeness, the
problem is restated here:

Problem “A soft-drink manufacturer claims that its 12-ounce cans do not contain, on
average, more than 30 calories. A random sample of 64 cans of this soft drink, which
were checked for calories, contained a mean of 32 calories with a standard deviation
of 3 calories. Does the sample information support the alternative hypothesis that the
manufacturer’s claim is false? Use a significance level of 5%. Find the range for the
p-value for this test. What will your conclusions be using this p-value and α = .05?”

Solution The first question one must answer is: what is the null hypothesis of the
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problem? Let µ0 be the average or mean number of calories in a 12-ounce can of this soft
drink. The manufacturer claims that µ0 is not, “on average, more than 30 calories.” If
µ0 is not more than 30 calories, then it must be either less than or equal to 30 calories,
so this claim is the null hypothesis of the problem, that is, H0 : µ0 ≤ 30 calories. The
alternative hypothesis is the logical negation of H0, hence Ha : µ0 > 30 calories, which
requires a right-tailed test . Since a population standard deviation σ is not given in the
problem statement, we must use the t distribution to test the hypothesis.

The first question asks if the sample information supports the alternative hypothesis
Ha, using a significance level of 5%, that is, for α = .05. This is the same as asking if
the sample information requires us to reject the null hypothesis H0 at this significance
level! The sample mean is x = 32, the sample standard deviation is s = 3, the sample
size is n = 64, and the number of degrees of freedom is df = n − 1 = 63. The critical
value of t, that is, tα = t.05, for a right-tailed test and significance level α = .05, is the
value t.05 defined by equation (35):

P (t > t.05) = .05 .

Using the TI-84 calculator, it is given by t.05 = invT( (1 − .05), 63 ) = invT( .95, 63 )
= 1.6694. The observed value, or test statistic, t0, is given by equation (39):

t0 =

√
n (x − µ0)

s
=

√
64 ( 32 − 30)

3
= 5.3333 .

Since the observed value t0 = 5.3333 is (much) greater than the critical value tα = 1.6694
(t0 lies deep in the rejection region to the right of tα), we would by the critical value test
reject the null hypothesis at this significance level, that is, the sample information does
support the alternative hypothesis that the manufacturer’s claim is false. Note that the
critical value t.05 = 1.669 could also be found in the t distribution Table V of [1] at the
intersection of df = 63 in the first column of the Table, and the area .05 in the right tail
(the significance level) from the first row of the Table.

Once the observed value t0 has been determined, the appropriate p-value pt0 is given
by equation (45):

p5.3333 = P (t > 5.3333).

It can be calculated using p5.3333 = tcdf(5.3333, 1E99, 63) = 6.953× 10−7. Since pt0 is
much less than the significance level α, that is, 6.953×10−7 < .05, we would again reject
the null hypothesis, this time by the p-value test.

We should note that the observed value (test statistic) t0 and its corresponding p-
value, could have been determined by pressing the [STAT] key on the calculator, then
under TESTS selecting T-Test. Scrolling right to highlight Stats, and entering the
hypothesized mean µ0, the sample mean x, the sample standard deviation s, and the
sample size n, the resulting output would include t, the observed value t0 calculated using
equation (39), and p, the p–value pt0 from equation (45) corresponding to t0. They are
the same values determined in the above discussion.

We have now shown, using the calculator, that either test gives the same result,
namely, to reject the null hypothesis and conclude that the manufacturer’s claim is false.
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However, the problem also asks you to find the range for the p-value for this test. This
seems, at first sight, to be a strange request. After all, there is only one p-value, pt0 ,
corresponding to a given observed value t0, and we determined it using the calculator to
be the quite small value of 6.953× 10−7.

A range of p-values is an artifact of attempting to use Table V of the textbook, rather
than the calculator, to determine the p-value. Remember that this is the value of the area
in the right tail, from the first row of Table V, corresponding to t0 = 5.3333 and df = 63.
We see that the largest value of t in the row for df = 63, however, is t = 3.225, for which
the p-value is p3.225 = .001. The test statistic t0 = 5.3333 lies somewhere to the right of
this t-value if the table could be extended to include it, and the corresponding p-values
in the first row decrease as we move to the right. As t → ∞, the p-value approaches 0,
so the p-value we seek for t0 = 5.3333 lies somewhere between .001 and 0, that is, the
p-value lies in the range 0 < pt0 < .001, concluding the solution to the problem using
Table V. Since the significance level α = .05 is greater than the largest p-value .001 of
this range, we would again reject the null hypothesis based on this range of p-values.

Short Notes on Hypothesis Testing
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Figure 3: Standard Normal pdf.



40

Chapter 13: Simple Linear Regression

A simple linear regression model is the only topic to be discussed from this chapter.
It is a probabilistic model that hypothesizes a linear relation between measurements of
observations from either a population, or a sample from a population, of values of a
dependent variable y, called the observed or actual values of y, and measured values of
some independent variable x related to the measurements of y. Thus, two sets of data
are involved, each containing N points if the data are from populations, or n points if
they are from a sample of a population.

A scatter plot of the observed values y versus the independent variable values x can
be obtained by first entering the x-values in list L1, and the y-values in list L2. Press
the [Y=] key at the far upper left corner of the keyboard to display the equation editor.
Press [CLEAR] at the Y1= tab to delete any function expression that may have been
previously entered. Scroll up to PLOT1 and press [ENTER] to turn off PLOT1 (it will
be highlighted after this step). Press [2ND] then [Y=], to go to the STAT PLOTS tab.
Press [ENTER] to select 1:, then highlight [ON] to turn [PLOT1] on for plotting data
points. Scroll down to TYPE, and select the first option to create a scatter plot. At XLIST
enter L1, and at YLIST enter L2. Scroll down to select a Mark, such as +, to indicate the
symbol to be used for a point of the plot. Finally, press the [ZOOM] key, scroll down to
ZoomStat, and press [ENTER] to obtain the scatter plot of your data.

NOTE. In order to return use of the Y1= tab in the equation editor to the graphing
of a function, you must scroll up to PLOT1 and press [ENTER] to remove the highlight,
turning the plot back on. Failure to do so can be a great source of frustration when you
wish later to graph, say, a polynomial function for your College Algebra course.

For linear regression, the model is an assumed straight-line relationship between
estimated, or predicted, values of y, denoted by ŷ, and the independent variable x of the
data set:

ŷ = a + bx . (47)

We say that this line gives the regression of variable y on variable x . The ŷ–intercept
a and slope b are determined by finding the minimum value of the error sum of squares
SSE, defined to be the sum of the squared (vertical) deviations of the observed y-values
from the corresponding estimated values:

SSE =
∑

(y − ŷ)2. (48)

The ”least-squares” method for determining the linear regression coefficients a and b
typically relies on concepts from calculus , see, for example, [7, Section 13.9], beyond the
math prerequisites for the Elementary Statistics course. However, the coefficients can
also be derived using only algebra, and in a concluding subsection we give the details of
one such method due to Ehrenberg [8] that should be understandable by students who
have had a College Algebra course.
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Formulas Using the Sums and Sums of Squares of Data from
Two Data Sets

A simple linear regression model is a probabilistic model that hypothesizes a linear
relation between measurements of observed values of some dependent variable y, and
measurements of values of some independent variable x. Thus, two sets of data are
involved, each containing N points if the data are from a population, or n points if they
are from a sample from a population. The model is an assumed straight-line relationship
between estimated or predicted values of y, denoted by ŷ, and the independent variable
x:

ŷ = a + bx . (49)

We say that this line gives the regression of variable y on variable x .
The goal in all of this is the calculation of a and b to be used in equation (49).

For problems in which you are given the sums
∑
x and

∑
y, and the sums of squares

or products,
∑
x2,

∑
y2, and

∑
xy, follow these steps: From the textbook [1, Section

13.2.2], the three “sums of squares” SSxx, SSxy, and SSyy are defined and calculated as
follows (they are actually sums of products of deviations from the mean):

SSxx =
∑

x2 − (
∑
x)2

n
, (50)

SSxy =
∑

xy − (
∑
x) (
∑
y)

n
, (51)

SSyy =
∑

y2 − (
∑
y)2

n
. (52)

where n is the number of sample data points in each set. Formulas (50)–(52) hold for
sample data. If population data is given, replace n by N in every formula.

The slope coefficient b is given in terms of two of the sums of squares as

b =
SSxy
SSxx

, (53)

while the intercept a is given in terms of b and the sums of the x and y values by

a =

∑
y

n
− b ·

∑
x

n
, (54)

with b given by equation (68). Equations (53) and (54) are all that are necessary to
determine the linear regression equation (49). Just substitute these values of a and b
into equation (49).

These values of the sums of squares provide the following minimum SSE of value

SSEmin = SSyy
(

1 − r2
)
. (55)

where the coefficient of determination, r2, is defined by

r2 =
(SSxy)

2

SSxx · SSyy
. (56)
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The minimum SSE defined by equation (70) is zero only when r2 = 1, or r = ±1,
where

r =
SSxy√

SSxx · SSyy
(57)

is referred to as the simple linear correlation coefficient . When r = 1, the data is said to
have perfect positive linear correlation, and when r = −1 it has perfect negative linear
correlation.

It is important to observe that SSxx and SSyy are always positive (they truly are
sums of squared terms, by definition, unlike SSxy). But both the correlation coefficient
r, and the slope b of the regression line, are proportional to SSxy, which can be either
positive or negative. Hence, a regression line with positive slope b corresponds to a
positive correlation coefficient r (and the data are said to be positively correlated), while
a regression line with negative slope b corresponds to a negative correlation coefficient r
(and the data are said to be negatively correlated).

Using a TI Graphing Calculator to Determine the Regression
Line Statistics from Two Sets of Data

On either the TI-83 or TI-84, the coefficients a and b can be determined from the sample
x-values in list L1, and the sample y-values in list L2. Press [STAT], select CALC, and
scroll down, past the option LinReg(ax + b), to LinReg(a + bx). On the TI-84, input
L1 for Xlist, and L2 for Ylist; leave FreqList empty, but for Store RegEQ press [VARS],
scroll to YVARS, select 1:FUNCTION, then select 1:Y1. This returns you to LinReg(a +
bx) with Y1 entered at Store RegEQ (storing the computed regression line equation to
be graphed later). For the TI-83, input the comma–separated lists L1,L2,Y1 (obtaining
Y1 using the steps just outlined). The output displays the regression equation (47) in
the form y = a + bx on the first line, and the values for the slope b and ŷ-intercept a.
By pressing [GRAPH] the regression line and scatter plot are now plotted on the same
graph for comparison.

As a major revision to this Section, I realized that the regression coefficients a and b,
the coefficient of determination r2, the linear correlation coefficient r, and the standard
deviation of errors se for a linear regression problem can all be determined from two
given sets of either sample or population data by first entering one set as x-values in list
L1, and the second set as y-values in list L2 (you must determine from the context which
set represents the variable x and which set represents y). The LinRegTTest program
on either the TI-83 or TI-84 will make the calculations for you.

Press [STAT], select TESTS, and scroll down to the LinRegTTest program. Input
the two lists, set Freq:1, and choose β& ρ : 6= 0. Leave RegEQ: empty. The first line of
the output is the regression equation y = a+ bx. It is followed by the number of degrees
of freedom for the problem, df = , then the values for the ŷ-intercept a and slope b
of the regression equation. The standard deviation of errors is s = , followed by r2 =

and r = . It also performs a t-test on the value of the slope β (population parameter
estimated by b), and a hypothesis test for the null hypothesis Ho : β = 0 (equivalently,
ρ = 0) against one of the alternatives:
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• H1 : β 6= 0 and ρ 6= 0 (β & ρ 6= 0)

• H1 : β < 0 and ρ < 0 (β & ρ < 0)

• H1 : β > 0 and ρ > 0 (β & ρ > 0)

Confidence Interval Estimate of B

This confidence interval can be calculated as before in Chapter 8 with some minor mod-
ifications. Using either the TI-83 or TI-84, press [STAT], scroll over to TESTS, select
TInterval, and press [ENTER]. Then, under TInterval, at Inpt, scroll over and high-
light Stats by pressing [ENTER] again.

In place of the sample mean x, use your calculated value for the coefficient b, that is,

x : b. (58)

Instead of using for Sx the sample standard deviation s, divided by
√
n, you must now

compute the standard deviation of errors , se, defined by

se =

√
SSyy − b SSxy

n− 2
, (59)

where SSxy and SSyy are defined in equations (64) and (65), and n is the number of
degrees of freedom. Then, using this value for se, compute

sb =
se√
SSxx

, (60)

where SSxx is given by equation (63). To obtain the correct confidence interval, the final
value to be entered in place of Sx must be

Sx : sb
√
n− 1. (61)

The last modification is to replace the sample size n by one less than that value:

n : n− 1. (62)

The (decimal valued) confidence coefficient “C-Level” is entered as usual.
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To illustrate the use of TInterval in getting a confidence interval estimate for B,
here is how it would work for Example 13-4 of the textbook. You are given n = 7,
b = .2525, SSxx = 1772.8571, and se = 1.5939. We first compute sb = se/

√
SSxx, which

gives us sb = 1.5939/
√

1772.8571 = 0.037855. Then, under TInterval, with Inpt: Stats
highlighted, enter

x: 0.2525

Sx: 0.037855
√

6
n: 6

C-Level: 0.95

The top line of the output will contain the confidence interval in the form (tL, tU),
where the numbers tL and tU are the lower and upper endpoints, respectively, of the
confidence interval.

Appendix: Algebraic Derivation of the Regression Coefficients

We begin with the error sum of squares SSE defined by equation (48), using definition
(47) of the linear regression equation to replace ŷ:

SSE =
∑

(y − ŷ)2 =
∑[

y −
(
a + bx

)]2
.

To be clear, we should write SSE as SSE(a, b), to indicate that it is a function of the
regression line coefficients a and b, but for convenience these arguments will be omitted
in what follows. The trick leading to an algebraic solution for a and b is the following. In
the bracketed expression, we add and subtract the sample mean y of the y data values,
and b times the sample mean x of the x data values, that is, bx (so the net effect is
simply to add zero inside the bracket, leaving the value of SSE unchanged), to write
SSE as

SSE =
∑(

y + y − y︸ ︷︷ ︸ + bx − bx︸ ︷︷ ︸ − a − bx
)2
.

The terms can then be regrouped to obtain

SSE =
∑{

(y − y) − b(x− x) −
[
a − (y − bx)

]}2

.

Squaring the sum of the three distinct terms inside the summation, noting that (A +
B + C)2 = A2 +B2 + C2 + 2AB + 2BC + 2CA, yields

SSE =
∑{

(y − y)2 + b2(x− x)2 +
[
a − (y − bx)

]2 − 2b(x− x)(y − y)

+ 2b
[
a − (y − bx)

]
(x− x) − 2

[
a − (y − bx)

]
(y − y)

}
.
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The quantities a, b, x, and y, hence also the combination
[
a − (y − bx)

]
, are all

constants , which can be taken outside the summation wherever they occur as factors,
and this allows us to write the last equation for SSE as

SSE =
∑

(y − y)2 + b2
∑

(x− x)2 + n
[
a − (y − bx)

]2 − 2b
∑

(x− x)(y − y)

+ 2b
[
a − (y − bx)

]∑
(x− x) − 2

[
a − (y − bx)

]∑
(y − y).

But the sums of the deviations from the means both vanish, that is,
∑

(x− x) = 0 and∑
(y − y) = 0, so we are left with

SSE = n
[
a − (y − bx)

]2
+ b2

∑
(x− x)2 − 2b

∑
(x− x)(y − y) +

∑
(y − y)2,

after rearranging terms. In accordance with the textbook [1, Section 13.2.2], we introduce
the three “sums of squares” (really, these are “sums of products of deviations from the
mean”) SSxx, SSxy, and SSyy defined by

SSxx =
∑

(x− x)2 =
∑

x2 − nx2 =
∑

x2 − (
∑
x)2

n
, (63)

SSxy =
∑

(x− x)(y − y) =
∑

xy − nx y =
∑

xy − (
∑
x) (
∑
y)

n
, (64)

SSyy =
∑

(y − y)2 =
∑

y2 − ny2 =
∑

y2 − (
∑
y)2

n
, (65)

and substitute these definitions for the summations in the last equation for SSE:

SSE = n
[
a − (y − bx)

]2
+ b2 SSxx − 2b SSxy + SSyy.

Factoring SSxx from the two terms involving b, and completing the square on b in the
result, we obtain

SSE = n
[
a − (y − bx)

]2
+ SSxx

(
b2 − 2b

SSxy
SSxx

)
+ SSyy

= n
[
a − (y − bx)

]2
+ SSxx

(
b − SSxy

SSxx

)2

−
SS 2

xy

SSxx
+ SSyy.

The coefficient of determination, r2, is defined by

r2 =
SS 2

xy

SSxx · SSyy
, (66)

which allows us to replace the third term of the SSE depending on SS 2
xy, by r2 SSyy,

yielding after a little algebra:

SSE = n
[
a − (y − bx)

]2
+ SSxx

(
b − SSxy

SSxx

)2

+ SSyy
(

1 − r2
)
. (67)
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Since the constant, SSxx, is a sum of squared values, it is necessarily positive, and
certainly the sample size n is positive, hence the coefficients of both perfect squares
defining the SSE are positive. It follows that any deviations of a and b from the values

b =
SSxy
SSxx

, (68)

and

a = y − x b, (69)

with b given by equation (68), can only increase the SSE. Therefore, these values
provide the minimum SSE of value

SSEmin = SSyy
(

1 − r2
)
. (70)

This is zero only when r2 = 1, or r = ±1 (perfect positive or negative linear correlation),
where

r =
SSxy√

SSxx · SSyy
, (71)

is the simple linear correlation coefficient .
It is perhaps worth noting that if the coefficient of determination r2 is replaced by

its definition (66), and in that definition we replace b = SSxy/SSxx, we find that

r2 =
SS 2

xy

SSxx · SSyy
=

b SSxy
SSyy

,

hence the minimum SSE of equation (70) can be written as

SSEmin = SSyy
(

1 − r2
)

= SSyy
(

1 − b SSxy
SSyy

)
= Syy − b SSxy,

or, in terms of the standard deviation of errors se defined by (59):

SSEmin = (n− 2) s2e . (72)

Thus, the minimum error sum of squares SSEmin is proportional to the square of the
standard deviation of errors (the variance of errors?).
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