ELEMENTS OF LOGIC

There are five primary logical connective symbols used in relating *statements*, or equivalently, *propositions*:

\sim	logical "not"	negation
\wedge	logical "and"	conjunction
V	logical "or"	disjunction
\longrightarrow	logical "if-then"	conditional
\longleftrightarrow	logical "if and only if"	biconditional

- I. The **negation** ("**not** p", or $\sim p$) of a statement is false when the statement is true, and true when the statement is false.
- II. A **conjunction** ("p and q", or $p \wedge q$) of two statements is *true* only when *both statements* are *true*, that is, $p \wedge q$ means the proposition "both a and b are true".
- III. A **disjunction** ("p or q", or $p \lor q$) of two statements is *false* only when *both statements are* false, that is, $p \lor q$ means the proposition "at least one of the propositions a, b is true."
- IV. There are four forms of "conditional" statements, each of which is $true \ \underline{except}$ when $a \ true$ premise implies a false conclusion:
 - (a) A **conditional** proposition is stated "if p then q", written $p \longrightarrow q$.
 - (b) The **contrapositive** of the conditional $p \longrightarrow q$ interchanges the hypothesis and conclusion, and also negates each of them, to read $\sim q \longrightarrow \sim p$. As you will see on the last page of this note, the *conditional* and its *contrapositive* have precisely the same truth tables.
 - (c) The **converse** of the conditional $p \longrightarrow q$ interchanges the hypothesis and conclusion, to read $q \longrightarrow p$.
 - (d) The **inverse** of the conditional $p \longrightarrow q$ negates both the hypothesis and conclusion (but does not change their order), to read $\sim p \longrightarrow \sim q$. From the truth tables on the last page you will find that the *inverse* and *converse* have precisely the same truth tables.
- V. The **biconditional**, stated "p if and only if q", and written $p \longleftrightarrow q$, is true when p, q are either both true, or both false.
- VI. A **tautology** is a compound statement that is true for every truth value of the simple statements comprising it. The column of its truth values will contain T for every entry.

Truth tables for these relations are presented on the following pages. By definition, two pairs of logical propositions having the *same* truth tables are said to be *equivalent*. Two equivalent propositions written as a biconditional relation form a *tautology*, that is, a proposition that is *always true*. For example, you should be able to show from the truth tables on the last page that the following two compound statements are tautologies:

$$(p \longrightarrow q) \longleftrightarrow (\sim q \longrightarrow \sim p),$$

and

$$(q \longrightarrow p) \longleftrightarrow (\sim p \longrightarrow \sim q).$$

Truth Table for Statement p

 $egin{array}{c} p \\ \hline T \\ \hline F \\ \hline \end{array}$

Truth Table for **Negation** of Statement p

p	$\sim p$
T	F
F	T

Truth Table for Conjunction of Statements: "p and q"

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

<u>Truth Table for **Disjunction** of Statements: "p or q"</u>

p	q	$p \lor q$
T	T	T
T	\overline{F}	T
F	T	T
F	F	F

<u>Truth Table for Biconditional of Statements: "p if and only if q"</u>

p	q	$p \longleftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

p	q	$p \longrightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Truth Table for Contrapositive of Conditional "if p then q": "if not q, then not p"

p	q	$\sim q$	$\sim p$	$\sim q \longrightarrow \sim p$
T	T	F	F	T
T	F	T	F	F
F	T	F	T	T
F	F	T	T	T

Truth Table for Converse of Conditional "if p then q": "if q, then p"

p	q	$q \longrightarrow p$
T	T	T
T	F	T
F	T	F
F	F	T

Truth Table for Inverse of Conditional "if p then q": "if not p, then not q"

p	q	$\sim p$	$\sim q$	$\sim p \longrightarrow \sim q$
T	T	F	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T