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The Elementary Statistics course at IRSC began using this semester (Fall 2013) the newest, 8th edition,
of Prem Mann’s textbook Introductory Statistics. I have available only the 7th edition [1] used in previous
years, which I will be referencing in what follows. However, the material to be discussed has not been
changed in the newer edition.

My motivation for writing this was something that puzzled me in the first two sentences of [1, Section
3.4.1]. The first states that “Chebyschev’s theorem gives a lower bound for the area under a curve
between two points that are on opposite sides of the mean and at the same distance from the mean.”
(I have changed the sentence only in emphasizing the phrase area under a curve.) This is immediately
followed by highlighted text that starts with the word Definition, under which we find a statement of
“Chebyschev’s Theorem: For any number k greater than 1, at least (1 − 1/k2) of the data values lie
within k standard deviations of the mean.” (Again, I have changed the statement only by emphasizing the
phrase the data values .) My concern was how to reconcile the difference in phrasing between “area under
a curve” and “the data values.” That is, a scatter plot of, say, relative frequencies versus data values does
not define a curve, but only shows the discrete distribution of relative frequencies. I believe that what is
being implied, but not stated, is that some sort of curve-fitting process has been assumed to have been
applied to the data to determine a best fit continuous curve through the relative frequency values. This
curve could be assumed to define the probability density function for a continuous random variable, whose
values would include the sample data values. Such a curve would then give a probabilistic meaning to the
first statement of the theorem referring to the area under a curve.

Unfortunately, probabilistic concepts like random variables or their probability densities and distribution
functions are not introduced until later chapters of the textbook. Under these circumstances, I wanted to
understand the results of the theorem stated solely in terms of data values, and what follows is a record of
what I found.

So, suppose given a data sample {x1, x2, . . . , xn} of size n. The mean x of the sample is calculated as
usual:

x =

∑n
i=1 fixi

n
,

where fi is the frequency of sample xi, and n =
∑n

i=1 fi. The sample variance is defined by

s2 =

∑n
i=1 fi(xi − x )2

n− 1
.

It proves convenient to rank order the sample data in ascending order, creating a rearranged data set
{y1, y2, . . . , yn}, where y1 ≤ y2 . . . ≤ yn, and yi occurs with frequency Fi. The mean and variance of the
data are not changed by a rearrangement, so the mean of the y–data is x, and the variance is

s2 =

∑n
i=1 Fi( yi − x )2

n− 1
.

Now choose two values in the range of the y–data, say Y1 and Y2, such that Y1 < x < Y2, and each is the
same (positive) distance from x, that is, x − Y1 = Y2 − x > 0. These values Y1 and Y2 do not have to be
elements from the set of sample data. They partition the sample data into three mutually disjoint sets as
follows. Suppose that yj is the largest data point in the ordered set less than Y1, so that yj < Y1 ≤ yj+1.
Then the set {y1, y2, . . . yj} contains some number n1 of data points less than Y1. If y! > yj is the smallest
data point in the data set greater than Y2, so that y!−1 ≤ Y2 < y!, then the set {yj+1, yj+2, . . . y!−1}
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contains the number m of data points greater than or equal to Y1 and less than or equal to Y2. Finally,
the set {y!, y!+1, . . . yn} contains the number n2 of data points greater than Y2. The data frequencies thus
satisfy the following summation relation over the three disjoint sets just defined:

n∑

i=1

Fi =
j∑

i=1

Fi +
!−1∑

i=j+1

Fi +
n∑

i=!

Fi , (1)

equivalent to
n = n1 + m + n2 . (2)

Similarly, the sum defining the variance can be written in terms of three summations over disjoint sets as

s2 =

∑j
1 Fi( yi − x )2 +

∑!−1
j+1 Fi( yi − x )2 +

∑n
! Fi( yi − x )2

n− 1
.

Each summation is a sum of squared terms, so each is non-negative. The variance is thus decreased by
eliminating the middle term, implying the following inequality :

s2 ≥
∑j

1 Fi( yi − x )2 +
∑n

! Fi( yi − x )2

n− 1
.

Now, define a positive real number k > 0 by k = (x − Y1)/s = (Y2 − x)/s, where s =
√
s2 is the sample

standard deviation. This k just equals the absolute value of the deviations of Y1 and Y2 from the mean,
measured in units of the sample standard deviation, and is not necessarily a positive integer . In terms of
k, we can write the values Y1 and Y2 as Y1 = x− ks and Y2 = x+ ks. For all yi in the first sum, we have
yi < Y1 = x− ks, hence yi < x− ks, or yi −x < −ks. Since k and s are positive, −ks is negative, hence by
multiplying both sides of the inequality by −1, we obtain −(yi − x) > ks, an inequality between positive
numbers. Squaring both sides of this inequality yields (yi − x)2 > k2s2. Similarly, for all yi in the second
sum we have yi > Y2 = x + ks, hence yi > x + ks, or yi − x > ks. Since this inequality involves positive
numbers on each side, we can square both sides to again obtain (yi − x)2 > k2s2. Substituting k2s2 for
(yi − x)2 in each term of each summation yields another inequality:

s2 > k2s2
(∑j

1 Fi +
∑n

! Fi

n− 1

)
,

or, in terms of the numbers of sample points in each partition of the data set:

s2 > k2s2
(
n1 + n2

n− 1

)
.

But from equation (2), the last inequality is equivalent to

s2 > k2s2
(
n − m

n− 1

)
. (3)

This is easily solved for m to obtain

m >

[
n − (n− 1)

k2

]
.

The proportion, m/n, of sample data points lying between Y1 and Y2 thus satisfies

m

n
>

[
1 − (n− 1)

n

1

k2

]
.

However, for n > 1, we have

1 − (n− 1)

n

1

k2
= 1 − 1

k2
+

1

nk2
> 1 − 1

k2
,



since 1/(nk2) is always positive, hence the last inequality can be replaced by

m

n
> 1 − 1

k2
. (4)

Thus, the proportion of sample data points lying between Y1 = x − ks and Y2 = x + ks, that is, within k
standard deviations of the mean, is at least (1 − 1/k2), where k is defined by k = (x−Y1)/s = (Y2 − x)/s.
This, I believe, is a clearer statement of Chebyschev’s theorem for sample data. It involves specifically the
proportion of data points in the interval [Y1, Y2] centered on the mean, removing any ambiguity about what
“the data points” in the textbook statement actually refers to. We restrict k to values greater than 1, as
otherwise the right-hand side would take on a negative value. Since the proportion m/n is non-negative, it
is by default greater than any negative number, so k ≤ 1 would result in no additional information about
the inequality.

Most of the problems in [1, Chapter 3] applying Chebyschev’s theorem are stated in terms of information
about a sample size, the mean of that sample, its standard deviation, and the end points of some interval
centered on the mean (which we have denoted here by Y1 and Y2). However, the underlying sample data set
is never given, only the results for the mean and standard deviation after processing the data. If the sample
data were given, one could graph a scatter plot of relative frequencies to get an idea of their distribution.

All the illustrations in the textbook, however, appear to be of a distribution of data beneath a continuous
function (see Figures 3.5 – 3.8 of the textbook), presumably the results of a curve fit through the sample
data as speculated earlier. It is perhaps worthwhile, then, to present a derivation of Chebyschev’s inequality
for a continuous random variable x having an unknown probability density function f . Recall that in terms
of f , the probability that x lies in some interval [a, b] is defined by the integral

P (a ≤ x ≤ b) =

∫ b

a
f(x)dx. (5)

If µ is the mean, or expectation value of x, then the variance σ2 of x is defined by the expectation value of
(x− µ)2, that is,

σ2 =

∫ ∞

−∞
(x− µ)2f(x)dx. (6)

Partition the real line into three intervals, the middle one centered on the mean µ with end points x1 and
x2, assuming x1 < µ < x2, and both equidistant from µ, so that µ − x1 = x2 − µ > 0. Write the integral
as a sum over the three intervals defined by x1 and x2:

σ2 =

∫ x1

−∞
(x− µ)2f(x)dx+

∫ x2

x1

(x− µ)2f(x)dx+

∫ ∞

x2

(x− µ)2f(x)dx.

Since each integral is positive, the value of the sum of integrals can only be decreased by eliminating the
middle integral, hence we have the inequality

σ2 ≥
∫ x1

−∞
(x− µ)2f(x)dx+

∫ ∞

x2

(x− µ)2f(x)dx.

Proceeding as with the sample data example, define a real number k > 0 by k = (µ− x1)/σ = (x2 − µ)/σ,
the absolute value of the deviations of x1 and x2 from the mean, normalized by the standard deviation. In
terms of k, we can rewrite the interval end-points as x1 = µ−kσ and x2 = µ+kσ. By the same arguments
used in deriving the theorem for sample data, it follows that (x−µ)2 can be replaced in each integrand by
the constant k2σ2 to obtain the inequality

σ2 ≥ k2σ2

∫ x1

−∞
f(x)dx+ k2σ2

∫ ∞

x2

f(x)dx,

or, dividing both sides by σ2:

1 ≥ k2 [P (x ≤ x1) + P (x ≥ x2)] ,



using the definition (5) of probability in terms of the integral of the probability density function f . But
P (x ≤ x1) + P (x ≥ x2) = 1− P (x1 < x < x2), so

1 ≥ k2 [1− P (x1 < x < x2)] ,

from which we find

P (x1 < x < x2) ≥ 1 − 1

k2
. (7)

The statement of Chebyschev’s inequality for a continuous random variable x is thus ”the probability that
x lies between x1 = x− kσ and x2 = x+ kσ, that is, within k standard deviations of the mean, is at least
1 − 1/k2, where k = (µ − x1)/σ = (x2 − µ)/σ.” As for the sample data case, if we allow 0 < k ≤ 1, it
follows that 1/k2 ≥ 1, hence 1− 1/k2 ≤ 0. In this case inequality (7) would imply that

P (x1 < x < x2) ≥ a number less than or equal to zero .

But since any probability must be non-negative, the last inequality is true by default, hence choosing k ≤ 1
provides no additional information about the inequality.
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